A new role for milk: Delivering polyphenols with anti-cancer activity

Polyphenols found in tea manifest anti-cancer effects but their use is limited by poor bioavailability and disagreeable taste. A new study in the Journal of Dairy Science finds that when epigallocatechin gallate (EGCG), the major extractable polyphenol in green tea and the most biologically active, when diluted in skim milk or other milk complexes remains bioactive and continues to reduce colon cancer cell proliferation in culture at concentrations higher than 0.03 mg of EGCG/mL.

"These results support a new role for as an ideal platform for delivery of bioactive compounds and opens the door to a new generation of dairy products providing additional benefits to human health," say authors Sanaz Haratifar and Milena Corredig, of the Department of Food Science and Department of Human Health and Nutritional Sciences of the University of Guelph, Ontario, Canada.

The majority of extractable polyphenols in tea are flavan-3-ols, commonly referred to as catechins. EGCG is the major catechin found in tea. Tea polyphenols have been shown to inhibit tumor formation, reduce cancer , increase normal cell death (apoptosis), and/or suppress the formation of new blood vessels feeding tumors (angiogenesis). For several reasons, tea catechins have poor bioavailability and the goal of the current study was to encapsulate EGCG in casein () molecular aggregates, known as micelles, to maintain and enhance catechin bioavailability.

In one experiment, human colorectal (HT-29) were grown for 24 hours in the presence of EGCG in water or dispersed in milk. The number of living cancer (cell viability) was measured, and it was shown that EGCG reduced cell viability in a dose-dependent fashion although at higher concentrations (0.15 mg/mL and above), the antiproliferative effect of EGCG in water was greater than in milk.

Another experiment evaluated cancer cell proliferation after EGCG was added to different milk products, including skim milk, milk whey, and milk serum. While some differences were noted in cell proliferation at lower concentrations between EGCG in control medium and EGCG diluted in the milk components, at higher EGCG concentrations (0.8 mg/mL and above), EGCG reduced by 80% or more, whether diluted in milk or not.

"In order to exert their biological health benefits in vivo, polyphenols must be available and still active, even when present in a food matrix," comments Dr. Haratifar. "This study showed that the binding of EGCG to the casein micelles did not affect the bioefficacy of EGCG and cell uptake at concentrations higher than 0.03 mg of EGCG/mL of skim milk."

More information: "Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells," by S. Haratifar, K. A. Meckling, and M. Corredig. Journal of Dairy Science, Volume 97, Issue 2 (February 2014), dx.doi.org/10.3168/jds.2013-7263

Journal information: Journal of Dairy Science
Provided by Elsevier
Citation: A new role for milk: Delivering polyphenols with anti-cancer activity (2013, December 19) retrieved 29 March 2024 from https://medicalxpress.com/news/2013-12-role-polyphenols-anti-cancer.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Green tea flavonoid may prevent reinfection with hepatitis C virus following liver transplantation

 shares

Feedback to editors