Sumatra earthquake three times larger than originally thought

Feb 08, 2005
Splitting pattern

Northwestern University seismologists have determined that the Dec. 26 Sumatra earthquake that set off a deadly tsunami throughout the Indian Ocean was three times larger than originally thought, making it the second largest earthquake ever instrumentally recorded and explaining why the tsunami was so destructive.

By analyzing seismograms from the earthquake, Seth Stein and Emile Okal, both professors of geological sciences in Northwestern's Weinberg College of Arts and Sciences, calculated that the earthquake's magnitude measured 9.3, not 9.0, and thus was three times larger. These results have implications for why Sri Lanka suffered such a great impact and also indicate that the chances of similar large tsumanis occurring in the same area are reduced.

"The rupture zone was much larger than previously thought," said Stein. "The initial calculations that it was a 9.0 earthquake did not take into account what we call slow slip, where the fault, delineated by aftershocks, shifted more slowly. The additional energy released by slow slip along the 1,200-kilometer long fault played a key role in generating the devastating tsunami."

The large tsunami amplitudes that occurred in Sri Lanka and India, said tsunami expert Okal, result from rupture on the northern, north-trending segment of the fault -- the area of slow slip -- because tsunami amplitudes are largest perpendicular to the fault.

Because the entire rupture zone slipped (both fast and slow slip fault areas), strain accumulated from subduction of the Indian plate beneath the Burma microplate has been released, leaving no immediate danger of a comparable ocean-wide tsunami being generated on this segment of the plate boundary. However, the danger of a local tsunami due to a powerful aftershock or a large tsunami resulting from a great earthquake on segments to the south remains.

The analysis technique used by Stein and Okal to extract these data from the earth's longest period vibrations (normal modes) relied on results developed by them and colleague Robert Geller (now at the University of Tokyo) in their graduate studies almost 30 years ago. However, because such gigantic earthquakes are rare, these methods had been essentially unused until records of the Sumatra earthquake on modern seismometers became available.

The largest earthquake ever recorded, which measured 9.5, was in Chile on May 22, 1960.

Explore further: N. America treated to partial solar eclipse Thurs.

add to favorites email to friend print save as pdf

Related Stories

Regulators reject call for nuke plant shutdown

Sep 11, 2014

The Nuclear Regulatory Commission on Wednesday rejected a senior federal expert's recommendation to shut down California's last operating nuclear power plant until the agency can determine whether its twin reactors can withstand ...

Strong earthquake hits off eastern Indonesia

Sep 10, 2014

A strong earthquake hit off the coast of eastern Indonesia's Sulawesi island on Wednesday, causing panic among residents, but there were no immediate reports of injuries or damage. Authorities said there was no threat of ...

Seismic hazards reassessed in the Andes

Sep 02, 2014

Although being able to predict the date on which the next big earthquake will occur is still some way off becoming a reality, it is now possible to identify the areas where they will occur. IRD researchers ...

Recommended for you

Big black holes can block new stars

4 hours ago

Massive black holes spewing out radio-frequency-emitting particles at near-light speed can block formation of new stars in aging galaxies, a study has found.

MAVEN studies passing comet and its effects

4 hours ago

NASA's newest orbiter at Mars, MAVEN, took precautions to avoid harm from a dust-spewing comet that flew near Mars today and is studying the flyby's effects on the Red Planet's atmosphere.

POLARBEAR seeks cosmic answers in microwave polarization

4 hours ago

An international team of physicists has measured a subtle characteristic in the polarization of the cosmic microwave background radiation that will allow them to map the large-scale structure of the universe, ...

User comments : 0