Nano paint could boost antiterrorism, rescue efforts

Jan 28, 2005

New technology may be used to detect cancer in the first cells to become malignant

Night vision technology could become extremely precise thanks to an inexpensive water-based material capable of boosting particles of light in the infrared spectrum, say University of Toronto researchers. The material has the potential to enhance infrared images tenfold by coating lenses with a film a 10th of a millimetre thick and powering the material with a laser.
In a study published the January issue of the journal Optics Letters, University of Toronto professors Ted Sargent and Eugenia Kumacheva and colleagues produced optical gain - boosting the power in a beam of light the way a stereo boosts electrical signals - using nanometre-sized particles originally suspended in water. The material can be coated onto computer chips, sprayed onto windows and painted onto flexible fabrics to reveal a new infrared world -- featuring colours with wavelengths longer than the human eye can see.

"The infrared is the wavelength used to send billions of bits of information over thousands of kilometres in fibre-optic cables," says Sargent, a professor at U of T's Edward S. Rogers Sr. Department of Electrical and Computer Engineering. "Not only does it enable night vision in antiterrorism and search and rescue but it may be used to detect cancer in the first cells to become malignant because living tissue is transparent in certain colours in the infrared."

Chemistry professor Eugenia Kumacheva, the Canada Research Chair in Advanced Polymer Materials, and her team created quantum dots - nanometre-sized particles of the semiconductor lead sulfide - which produce light at carefully chosen infrared wavelengths. Kumacheva and her team invented a simple, one-stage, water-based synthesis that produced ready-to-use quantum dots.

The engineers then made thin, smooth films out of Kumacheva's materials by depositing a drop of water containing the nanoparticles onto a piece of glass and simply letting it dry. "When we used intense lasers to excite the nanomaterial, we found that the film could double the power of light in a propagating beam every 30 microns - about a thousandth of an inch," says Sargent, the Nortel Networks - Canada Research Chair in Emerging Technologies. Amplifying light is necessary for making a laser, for boosting signals on an optical communications chip and for enhancing infrared images in biological and antiterrorism applications.

The findings complement a breakthrough also made by Sargent and colleagues that was reported in Nature Materials Jan. 9. The team reported a paintable material that for the first time could sense light and harness the sun's energy at tailored wavelengths in the infrared. "The field of spray-on infrared nanotechnology is leaping ahead week-by-week," said Sargent. "The Jan. 9 discovery senses and harvests infrared light; today's boosts it. Applying these paintable infrared materials is splashing open a new palette: colouring our world using the shades we cannot see, but which power the Internet, reveal warm objects against a cold background and allow non-invasive diagnosis before disease has the chance to progress."

Other members of the U of T research team are Vlad Sukhovatkin, Sergei Musikhin, Sam Cauchi and Luda Bakueva of electrical and computer engineering and Ivan Gorelikov of chemistry. The study was funded by the Science and Engineering Research Canada (NSERC) under its NanoInnovation Platform and also by the Canada Research Chairs Program, the Canada Foundation for Innovation and the Ontario Innovation Trust.

Source: University of Totonto (by Karen Kelly)

Explore further: Understanding the source of extra-large capacities in promising Li-ion battery electrodes

add to favorites email to friend print save as pdf

Related Stories

Hubble sees a galaxy with a glowing heart

Jul 14, 2014

(Phys.org) —This view, captured by the NASA/ESA Hubble Space Telescope, shows a nearby spiral galaxy known as NGC 1433. At about 32 million light-years from Earth, it is a type of very active galaxy known ...

VLT clears up dusty mystery

Jul 09, 2014

A group of astronomers has been able to follow stardust being made in real time—during the aftermath of a supernova explosion. For the first time they show that these cosmic dust factories make their grains ...

New technology illuminates colder objects in deep space

Jul 09, 2014

Too cool and faint, many objects in the universe are impossible to detect with visible light. Now a Northwestern University team has refined a new technology that could make these colder objects more visible, paving the way ...

Recommended for you

Tough foam from tiny sheets

12 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0