Playing with Light and Color

Jan 26, 2005

Assemblies of blue-green iridium and red europium complexes undergo energy transfer and emit white light

Complexes of the rare earth element (lanthanide) europium have the ability to emit red light over a longer time span after excitation by, for example, light of a suitable wavelength or the energy of a prior redox reaction. This luminescence makes them interesting candidates for applications in biological test systems or as sensors.

In addition, they can also be used in functional units that emit light. Because europium complexes do not demonstrate any noteworthy absorption in the visible portion of the light spectrum, between about 400 and 700 nm, other strongly absorbing molecules must be used as light-gathering antennas to achieve sufficient photoluminescence under these conditions. These antennas must absorb the excitation light and transfer the energy it contains to the europium complex, which can then emit.

A team of researchers from the Netherlands and Russia has now more closely examined the use of a transition metal complex as the light gathering component for the photoluminescence of europium. They combined an iridium(III) phenylpyridine complex with a europium(III) terpyridine chelate. When the iridium compound alone is excited by light with a wavelength of 400 nm, it emits blue-green light (wavelengths between 460 and 491 nm). The europium complex emits red light with a 615 nm wavelength when stimulated by 350 nm light. When both components are mixed in the right ratio, they form a stable adduct made of one europium and two iridium units. This assembly begins to glow white after irradiation with light that has a wavelength of 400 nm, which is only absorbed by the iridium component.

The iridium component is thus clearly capable of transferring a portion of the energy it absorbs to the europium complex so that it too is stimulated to emit its characteristic light. The blue-green iridium radiation and the red europium radiation then mix, resulting in light that appears white.

Source: Chemie.De

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

Europium complexes emit red light at record efficiency

Apr 02, 2014

Researchers worldwide continue search for better luminescent materials for OLED manufacturing. Two new compounds with europium complexes developed at the Institute of Physical Chemistry of the Polish Academy ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.