Playing with Light and Color

Jan 26, 2005

Assemblies of blue-green iridium and red europium complexes undergo energy transfer and emit white light

Complexes of the rare earth element (lanthanide) europium have the ability to emit red light over a longer time span after excitation by, for example, light of a suitable wavelength or the energy of a prior redox reaction. This luminescence makes them interesting candidates for applications in biological test systems or as sensors.

In addition, they can also be used in functional units that emit light. Because europium complexes do not demonstrate any noteworthy absorption in the visible portion of the light spectrum, between about 400 and 700 nm, other strongly absorbing molecules must be used as light-gathering antennas to achieve sufficient photoluminescence under these conditions. These antennas must absorb the excitation light and transfer the energy it contains to the europium complex, which can then emit.

A team of researchers from the Netherlands and Russia has now more closely examined the use of a transition metal complex as the light gathering component for the photoluminescence of europium. They combined an iridium(III) phenylpyridine complex with a europium(III) terpyridine chelate. When the iridium compound alone is excited by light with a wavelength of 400 nm, it emits blue-green light (wavelengths between 460 and 491 nm). The europium complex emits red light with a 615 nm wavelength when stimulated by 350 nm light. When both components are mixed in the right ratio, they form a stable adduct made of one europium and two iridium units. This assembly begins to glow white after irradiation with light that has a wavelength of 400 nm, which is only absorbed by the iridium component.

The iridium component is thus clearly capable of transferring a portion of the energy it absorbs to the europium complex so that it too is stimulated to emit its characteristic light. The blue-green iridium radiation and the red europium radiation then mix, resulting in light that appears white.

Source: Chemie.De

Explore further: Physicists design quantum switches which can be activated by single photons

add to favorites email to friend print save as pdf

Related Stories

Europium complexes emit red light at record efficiency

Apr 02, 2014

Researchers worldwide continue search for better luminescent materials for OLED manufacturing. Two new compounds with europium complexes developed at the Institute of Physical Chemistry of the Polish Academy ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...