Tiny technology carries big promise

Jan 24, 2005

Nanotechnology has the potential to revolutionize materials, manufacturing, energy, security and healthcare. At the Research and Development Conference of MIT's Industrial Liaison Program last month, Professor Edwin L. Thomas, director of the Institute for Soldier Nanotechnologies at MIT, discussed the promises and challenges of nanotechnology.
"Nano is huge, with pervasive benefits for society, the economy and national security," said Thomas. In terms of its potential impact, "nano is on par with electricity, transistors, the Internet and antibiotics," he said.

The National Nanotechnology Initiative (NNI), launched in 1996, issued a list of "grand challenges" for nanotechnologists. These include chemical-biological-radiological-explosive detection and protection, manufacturing at the nanoscale, and efficient energy conversion and storage. The NNI's budget for 2005 approaches $1 billion.

With nanotechnology still a young field, the NNI's grand challenges are years from being met in most cases. In the near term, according to Thomas, advances will require a better understanding of the nano world and experimentation with nano-enhanced technologies.

Thomas described the nano world as a little-understood realm between the atomic and bulk properties of materials. Nanoparticles of a material behave differently than bulk amounts of the same material; at the nanoscale, a material may be stronger, lighter, more water-soluble, more heat-resistant, or a better conductor of electricity. At the nanoscale, the color of gold is not really "gold," but several different colors that vary by the amount of particles present. Medieval stained-glass makers knew this, said Thomas, even though they didn't know about the nanoscale. They put differing, tiny amounts of gold in the glass to yield the various colors found in stained-glass windows.

Similarly, today's scientists and engineers have found that it takes only small amounts of a nanoparticle, precisely placed, to change a material's physical properties. Adding nanoparticles of clay to a polymer used to wrap power lines increases strength and reduces flammability.

Nanocomposites, along with nanocoatings and microelectronics, are among the more immediate nanotechnology applications, what Thomas calls "low-hanging nano fruit." Contrast these with carbon nanotubes, whose extraordinary properties--strength, electrical and thermal conductivity, large surface area--have generated much excitement, but whose high cost ($227,000 per pound) prohibits their large-scale use.

Among the 40 projects being conducted at the ISN are those based on nanocomposites. One research team led by Robert Langer, the Germeshausen Professor of Chemical and Biomedical Engineering, is working to develop tunable surfaces that may help reduce the weight of a soldier's heaviest burdens: ammunition, batteries, and water.

Thomas pointed out that the U.S. does not dominate the field of nanotechnology. Only 25-30 percent of papers at nanotech conferences come from the U.S.; many more come from Europe. China is another competitor.

Safety issues present another challenge. Carbon nanotubes are similar in form to asbestos fibers, and there is concern that they could pose a similar risk to lung health. The evolution of nanotechnology will likely involve both testing nanomaterials before releasing them into the environment and taking steps to consider social and ethical consequences.

Source: Massachusetts Institute of Technology

Explore further: Nanoparticles give up forensic secrets

add to favorites email to friend print save as pdf

Related Stories

A new use for atomically engineered gold

Aug 29, 2012

A University of Central Florida assistant professor has developed a new material using nanotechnology, which could help keep pilots and sensitive equipment safe from destructive lasers.

Nanocrystal-coated fibers might reduce wasted energy

Apr 17, 2012

(Phys.org) -- Researchers are developing a technique that uses nanotechnology to harvest energy from hot pipes or engine components to potentially recover energy wasted in factories, power plants and cars.

Recommended for you

Nanoparticles give up forensic secrets

1 hour ago

A group of researchers from Switzerland has thrown light on the precise mechanisms responsible for the impressive ability of nanoparticles to detect fingermarks left at crime scenes.

New absorber will lead to better biosensors

8 hours ago

Biological sensors, or biosensors, are like technological canaries in the coalmine. By converting a biological response into an optical or electrical signal, they can alert us to dangers in our external and internal environments. ...

'Stealth' nanoparticles could improve cancer vaccines

11 hours ago

Cancer vaccines have recently emerged as a promising approach for killing tumor cells before they spread. But so far, most clinical candidates haven't worked that well. Now, scientists have developed a new ...

Nanoparticles accumulate quickly in wetland sediment

11 hours ago

(Phys.org) —A Duke University team has found that nanoparticles called single-walled carbon nanotubes accumulate quickly in the bottom sediments of an experimental wetland setting, an action they say could ...

User comments : 0