Magnetic field points the way for metallic nanorods with hydrogen peroxide propulsion

Jan 07, 2005

Remote Control Nanomotor

Like their normally sized analogues, nanoscale machines and robots need motors to function. Some time ago, a team at Pennsylvania State University developed a clever engine to "drive" nanoscopic metal rods; however, until now, these tiny "submarines" roamed at random through the solution. Now the research team headed by Ayusman Sen has made more progress: their "sequel" can be steered by remote control.

How do these steerable nanoscopic submarines work? First, it is important that the nanorods be made of "stripes" of different metals: one end of gold, followed by a very narrow band of nickel, a band of gold, another very narrow band of nickel, and the other end of platinum. The platinum end is responsible for the propulsion because it is here that the "fuel" is converted. The fuel in question is hydrogen peroxide that is present in the solution. It is catalytically converted by the platinum, producing oxygen, which also dissolves in the solution.

Having a high oxygen concentration, the solution surrounding the platinum end is less polar than the solution surrounding the other end of the nanorod. The surface tension between the solution and the metal surface is thus no longer equal at both ends of the rods and the rod is pulled inescapably in the direction of the oxygen-containing region of the solution. Because oxygen is constantly being formed, the gradient is maintained and the rod moves through the solution with its platinum end in front. The orientation of the nanorods in the solution is random; the overall motion is thus undirected.

This is where the "remote control"-an external magnetic field-comes in. The "receiving antennas" are the previously magnetized nickel bands in the nanorods. The crucial trick here is that the width of the bands must be smaller than their diameter, so that the nanorods can be magnetized crosswise, rather than along their long axis. When the magnetic field is switched on, the nanorods line up at right angles to its field lines and maintain this orientation as they zip around under hydrogen peroxide power. By changing the direction of the magnetic field, the researchers can vary the orientation of the nanorods-and thus the direction of their movement-at will. The nanorods are steerable.

"In principle, we should also be able to couple our nanorod motors to other nano-objects in order to drive them," says Sen. "This opens up new possibilities for a whole new class of micro- and nanomachines." The dimensions and magnetic properties of the nanorods are comparable to magnetotactic bacteria, which are oriented and steered by the magnetic field of the earth. Sen: "Thus, our nanorods are functional models for such organisms."

Source: Pennsylvania State University

Explore further: Nanoparticles give up forensic secrets

add to favorites email to friend print save as pdf

Related Stories

Traces of DNA exposed by twisted light

Oct 28, 2013

Structures that put a spin on light reveal tiny amounts of DNA with 50 times better sensitivity than the best current methods, a collaboration between the University of Michigan and Jiangnan University in China has shown.

Tiny battery is also a nanomotor

Oct 19, 2011

(PhysOrg.com) -- Measuring just 3.6 micrometers long, one of the smallest batteries ever made won’t be powering our electronic devices anytime soon, but it does serve as a self-powered nanomotor that ...

Recommended for you

Nanoparticles give up forensic secrets

8 hours ago

A group of researchers from Switzerland has thrown light on the precise mechanisms responsible for the impressive ability of nanoparticles to detect fingermarks left at crime scenes.

New absorber will lead to better biosensors

15 hours ago

Biological sensors, or biosensors, are like technological canaries in the coalmine. By converting a biological response into an optical or electrical signal, they can alert us to dangers in our external and internal environments. ...

'Stealth' nanoparticles could improve cancer vaccines

18 hours ago

Cancer vaccines have recently emerged as a promising approach for killing tumor cells before they spread. But so far, most clinical candidates haven't worked that well. Now, scientists have developed a new ...

Nanoparticles accumulate quickly in wetland sediment

18 hours ago

(Phys.org) —A Duke University team has found that nanoparticles called single-walled carbon nanotubes accumulate quickly in the bottom sediments of an experimental wetland setting, an action they say could ...

User comments : 0