The Science behind the Aceh Earthquake

Jan 02, 2005
The Science behind the Aceh Earthquake

Kerry Sieh, the Robert P. Sharp Professor of Geology at the California Institute of Technology and a member of Caltech's Tectonics Observatory, has conducted extensive research on both the Sumatran fault and the Sumatran subduction zone. Below, Sieh provides scientific background and context for the December 26, 2004 earthquake that struck Aceh, Indonesia.

The earthquake that struck northern Sumatra on December 26, 2004, was the world's largest earthquake since the great (magnitude 9.2) Alaskan earthquake of 1964. The great displacements of the sea floor associated with the earthquake produced exceptionally large tsunami waves that spread death and destruction throughout the Bay of Bengal, from Northern Sumatra to Thailand, Sri Lanka, and India.

The earthquake originated along the boundary between the Indian/Australian and Eurasian tectonic plates, which arcs 5,500 kilometers (3,400 miles) from Myanmar past Sumatra and Java toward Australia. Near Sumatra, the Indian/Australian plate is moving north-northeast at about 60 millimeters (2.4 in.) per year with respect to Southeast Asia. The plates meet 5 kilometers (3 miles) beneath the sea at the Sumatran Trench, on the floor of the Indian Ocean. The trench runs roughly parallel to the western coast of Sumatra, about 200 kilometers (125 miles) offshore. At the trench, the Indian/Australian plate is being subducted; that is, it is diving into the earth's interior and being overridden by Southeast Asia. The contact between the two plates is an earthquake fault, sometimes called a "megathrust." (see figure) The two plates do not glide smoothly past each other along the megathrust but move in "stick-slip" fashion. This means that the megathrust remains locked for centuries, and then slips suddenly a few meters, generating a large earthquake.

History reveals that the subduction megathrust does not rupture all at once along the entire 5,500-kilometer plate boundary. The U.S. Geological Survey reports that the rupture began just north of Simeulue Island. From the analysis of seismograms, Caltech seismologist Chen Ji has found that from this origin point, the major rupture propagated northward about 400 kilometers (249 miles) along the megathrust at about two kilometers per second. By contrast, the extent of major aftershocks suggests that the rupture extended about a thousand kilometers (620 miles) northward to the vicinity of the Andaman Islands. During the rupture, the plate on which Sumatra and the Andaman Islands sit lurched many meters westward over the Indian plate.

The section of the subduction megathrust that runs from Myanmar southward across the Andaman Sea, then southeastward off the west coast of Sumatra, has produced many large and destructive earthquakes in the past two centuries. In 1833, rupture of a long segment offshore central Sumatra produced an earthquake of about magnitude 8.7 and attendant large tsunamis. In 1861, a section just north of the equator produced a magnitude 8.5 earthquake and large tsunamis. Other destructive historical earthquakes and tsunamis have been smaller. A segment to the north of the Nicobar Islands ruptured in 1881, generating an earthquake with an estimated magnitude of 7.9. A short segment farther to the south, under the Batu Islands, ruptured in 1935 (magnitude 7.7). A segment under the Enganno Island ruptured in 2000 (magnitude 7.8), and a magnitude 7.4 precursor to the recent earthquake occurred in late 2002, under Simeulue Island.

This recent earthquake was generated by the seismic rupture of only the northernmost portion of the Sumatran section of the megathrust. Therefore, the fact that most of the other part of the section has generated few great earthquakes in more than a hundred years is worrisome. Paleoseismic research has shown that seismic ruptures like the one in 1833, for example, recur about every two centuries. Thus, other parts within the section of this fault should be considered dangerous over the next few decades.

During rupture of a subduction megathrust, the portion of Southeast Asia that overlies the megathrust jumps westward (toward the trench) by several meters, and upward by 1-3 meters (3-10 feet). This raises the overlying ocean, so that there is briefly a "hill" of water about 1-3 meters high overlying the rupture. The flow of water downward from this hill triggers a series of broad ocean waves that are capable of traversing the entire Bay of Bengal. When the waves reach shallow water they slow down and increase greatly in height--up to 10 meters (32 feet) or so in the case of the December 26 earthquake--and thus are capable of inundating low-lying coastal areas.

Although the tsunami waves subside in a short period of time, some coastal areas east of the megathrust sink by a meter or so, leading to permanent swamping of previously dry, habitable ground. Islands above the megathrust rise 1 to 3 meters, so that shallow coral reefs emerge from the sea. Such long-term changes resulting from the December 26 earthquake will be mapped in the next few months by Indonesian geologists and their colleagues.

Source: California Institute of Technology

Explore further: Ceres and Vesta Converge in Virgo

add to favorites email to friend print save as pdf

Related Stories

Great Alaska Earthquake shook Alaska 50 years ago

Mar 26, 2014

Electric clocks on walls in Anchorage shut down at 5:36 p.m. on March 27, 1964. Time stopped at the start of the '64 Great Alaska Earthquake, the second largest ever recorded at magnitude 9.2.

Recommended for you

Continents may be a key feature of Super-Earths

54 minutes ago

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Ceres and Vesta Converge in Virgo

2 hours ago

Don't let them pass you by. Right now and continuing through July, the biggest and brightest asteroids will be running on nearly parallel tracks in the constellation Virgo and so close together they'll easily ...

A full-spectrum Mars simulation in a box

2 hours ago

There are many reasons why Mars excels at destroying expensive equipment. For one thing, its entire surface is made of partially-magnetized dust. For another, Mars possesses just enough atmosphere so that ...

User comments : 0

More news stories

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...