As robots learn to imitate

Dec 22, 2004

Can robots learn to communicate by studying and imitating humans' gestures? That's what MIRROR's researchers aimed to find out by studying how infants and monkeys learn complex acts such as grasping and transferring it to robots.
"Our main motivation for the project was to advance the understanding of how humans recognise and imitate gestures," says Professor Giulio Sandini, coordinator of the three-year IST-funded project, MIRROR. "We did that by building an artificial system that can learn to communicate by means of body gestures."

Researchers began by designing and conducting behavioural experiments with infants of different ages and with monkeys within the framework of the so-called ‘mirror neurons’. These neurons, first discovered in the brains of monkeys, have the unique property of being activated not only when monkeys or human infants perform specific grasping actions, but also when they see the same grasping action performed by someone else – for example, the mirror image of his or her own body. Mirror neurons behave as a motor resonant system activated both during goal-directed actions and the observation of similar actions performed by others.

During the first year of the project, researchers worked at improving humanoid robotic platforms and conducted experiments using a ‘cyber glove’. This set-up allowed researchers to collect visual and motor data that was used in investigating the relationship between vision and action in the recognition of hand gestures.

The second year’s experiments with monkeys and infants investigated how visual and motor information can be used to learn to discriminate grasping actions. They then used that information to show how, by detecting visual clues to the function of an object, a robot can mimic simple object-directed actions.

In the final year they concentrated on integrating the developed work into a humanoid robot, which consisted of a binocular head, an arm, and a multi-fingered hand. Although the integration is not fully complete, they believe they have uncovered many elements of a biologically-compatible architecture that can be replicated in robots.

”We now have better knowledge of how and when the ability to grasp objects appropriately appears in human babies,” says Professor Sandini. “From the robotics point of view, we demonstrated that it is easier to interpret actions performed by others if the system has built a representation of the action during learning. Learning precedes understanding. We implemented a complex behaviour on our robot based on this representation.”

Although the project is finished, all the members of the consortium now participate in a follow-up FP6 IST project called RobotCub that has, among other aspects, the scientific goal of continuing the MIRROR’s project work. RobotCub focuses on building a humanoid platform and studying the development of manipulation skills.

Source: IST Results

Explore further: From tobacco to cyberwood

Related Stories

Caring and sharing is monkey business

Jan 20, 2015

Chimpanzees, much like children, can learn to be kind by observing and experiencing the kindness of others, according to new research by the University of St Andrews.

UMSL scholar examines evolution of learning

Aug 14, 2014

Why do monkeys learn to be afraid of snakes and not flowers? Is this knowledge the result of evolution by natural selection? Did the monkeys that couldn't learn that association quickly die and not reproduce?

Recommended for you

From tobacco to cyberwood

13 hours ago

Swiss scientists from ETH Zurich have developed a thermometer that is at least 100 times more sensitive than previous temperature sensors. It consists of a bio-synthetic hybrid material of tobacco cells and nanotubes.

Scientists convert microbubbles to nanoparticles

17 hours ago

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

'Atomic chicken-wire' is key to faster DNA sequencing

20 hours ago

An unusual and very exciting form of carbon - that can be created by drawing on paper- looks to hold the key to real-time, high throughput DNA sequencing, a technique that would revolutionise medical research ...

3-D images of tiny objects down to 25 nanometres

22 hours ago

Scientists at the Paul Scherrer Institute and ETH Zurich (Switzerland) have created 3D images of tiny objects showing details down to 25 nanometres. In addition to the shape, the scientists determined how ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.