Matsushita Develops the AlGaN/GaN Power FET on Silicon Substrate

Dec 15, 2004
Matsushita Develops the AlGaN/GaN Power FET on Silicon Substrate

Matsushita's novel technology achieves a low-cost, low-loss fast switching device with 1/10 on-state resistance of Si power MOS

Matsushita Electric Industrial Co., Ltd., best known for its Panasonic brand products, today announced the development of a new transistor to revolutionize switching devices. The new transistor can be used as a low-loss power switching device in applications like inverters for home electric appliances, hybrid cars and switching power supplies.

The AlGaN/GaN power FET is an aluminum gallium nitride (AlGaN)/gallium nitride (GaN) field effect transistor (FET) fabricated on an inexpensive silicon. The transistor uses Panasonic's own crystal growing technology and GaN materials that have over 10 times the breakdown voltage and below 1/5 lower resistance of existing silicon (Si). As a result, it has achieved a 350 V breakdown voltage, same as Si power metal-oxide-semiconductors (MOS), a very low specific on-state resistance of 1.9 m Ohm cm2 (below 1/10 of Si power MOS), and high-speed power switching of less than 0.1 nanosecond (below 1/100 of Si power MOS). The transistor also has a current handling capability of 150 A (over five times that of Si power MOS).

Just one of these new transistors can substitute more than 10 parallel-connecting Si power MOSFETs, contributing significantly to power savings and miniaturization of electronic products. By adopting silicon substrates, the material cost is drastically reduced to less than 1/100 of silicon carbide (SiC) power MOSFETs.

The new AlGaN/GaN power FET is the result of development of Panasonic's source-via-grounding (SVG) structure technology where the transistor source electrode is connected to the Si substrate through holes formed on the surface side. This eliminates source wires, bonding and pads from the substrate surface. Consequently, the chip size and wire inductance are significantly reduced.

An AlN/AlGaN buffer layer grown at a high temperature and an AlN/GaN multi-layer film are used on the first layer to reduce defect density on the Si substrate and improve the heterojunction interface quality. Panasonic developed the GaN growth technology in partnership with Professor Takashi Egawa of the Research Center for Nano-Device and System, Nagoya Institute of Technology. The new technology has been vital in making the new high power AlGaN/GaN FET.

By successfully growing GaN on an Si substrate, Panasonic responded, for the first time in the world, to the needs for low-loss switching devices that combine both high breakdown voltage and low specific on-state resistance. It was becoming increasingly difficult for current Si power MOSFETs to fulfill the needs.

Matsushita Electric Industrial Co., Ltd. has applied for 39 patents in Japan and 26 patents overseas on the new transistor.

The results of this development will be presented at the International Electron Devices Meeting (IEDM) 2004 held in San Francisco from December 13 to 15, 2004.

Explore further: Hendersons introduce hoverboard and a future beyond wheels

add to favorites email to friend print save as pdf

Related Stories

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

New species of electrons can lead to better computing

Sep 11, 2014

Electrons that break the rules and move perpendicular to the applied electric field could be the key to delivering next generation, low-energy computers, a collaboration of scientists from the University ...

Recommended for you

HP supercomputer at NREL garners top honor

2 hours ago

A supercomputer created by Hewlett-Packard (HP) and the Energy Department's National Renewable Energy Laboratory (NREL) that uses warm water to cool its servers, and then re-uses that water to heat its building, has been ...

Google's streaming music service adds mood to mix

2 hours ago

Google's music-subscription service will try to anticipate its listeners' mood swings as it amplifies its competition with Pandora, Spotify and other popular services that play tunes over the Internet.

Turner channels removed from Dish amid pact spat

2 hours ago

Channels such as Cartoon Network and CNN are no longer part of Dish's programming lineup as a deadline has passed for the satellite TV provider and Turner Broadcasting to renew their distribution agreement.

User comments : 0