Applied Materials and AmberWave Collaborate to Deliver 300mm Strained Silicon Technology

Dec 15, 2004

Applied Materials, Inc. has entered into an agreement with AmberWave Systems Corp. to license AmberWave's strained silicon intellectual property (IP) for Applied's use on its benchmark Applied Centura RP Epi system. Using this production-proven system, Applied Materials has already sampled state-of-the-art 300mm strained silicon epi wafers to a leading semiconductor manufacturer for advanced device development.

"Using AmberWave's strained silicon technology and the Applied Centura RP Epi system, we created a highly manufacturable 300mm strained silicon epitaxial process for advanced substrates used in developing high-performance transistor designs," said Dr. Randhir Thakur, vice president and general manager of Applied Materials' Front End Products group. "This strained silicon solution can dramatically accelerate the development process for chipmakers and wafer manufacturers without a large investment in process engineering."

AmberWave's strained silicon IP includes proprietary structures and processes to strain or "stretch" silicon's crystalline lattice structure, providing a cost-effective way to increase transistor speed or reduce power consumption. Very high levels of strain can be generated to achieve device improvements on both bulk silicon and SOI (silicon on insulator) wafers without scaling the size of the transistor. Devices fabricated with AmberWave's strained silicon technology have demonstrated up to 17% increase in speed and 34% reduction in power consumption compared to transistors fabricated with traditional silicon.

Richard Faubert, president and CEO of AmberWave, said, "This collaboration is a perfect fit for AmberWave. We expect to see many different types of high-performance devices profiting from the higher speed and lower power consumption of strained silicon."

Explore further: Apple sees iCloud attacks; China hack reported

add to favorites email to friend print save as pdf

Related Stories

X-rays, computer simulations reveal crystal growth

May 15, 2014

(Phys.org) —Taking a step toward much-coveted flexible electronics, an international research team that figured out how to coat an organic material as a thin film – like spreading butter on toast – ...

Practical chip-level optical interconnects

May 05, 2014

In efforts toward creating practical chip-level optical interconnects, researchers in Canada present the first nanoscale tube based photodetector, compatible with silicon platform integration.

Recommended for you

Apple sees iCloud attacks; China hack reported

1 hour ago

Apple said Tuesday its iCloud server has been the target of "intermittent" attacks, hours after a security blog said Chinese authorities had been trying to hack into the system.

HP supercomputer at NREL garners top honor

3 hours ago

A supercomputer created by Hewlett-Packard (HP) and the Energy Department's National Renewable Energy Laboratory (NREL) that uses warm water to cool its servers, and then re-uses that water to heat its building, has been ...

Google's streaming music service adds mood to mix

4 hours ago

Google's music-subscription service will try to anticipate its listeners' mood swings as it amplifies its competition with Pandora, Spotify and other popular services that play tunes over the Internet.

User comments : 0