NASA Set to Launch First Comet Impact Probe

Dec 14, 2004
Deep Impact's solar panels are opened for testing. Credit: NASA

Launch and flight teams are in final preparations for the planned January liftoff from Cape Canaveral Air Force Station, Fla., of NASA's Deep Impact spacecraft. The mission is designed for a six-month, one-way, 431 million kilometer (268 million mile) voyage. Deep Impact will deploy a probe that essentially will be "run over" by the nucleus of comet Tempel 1 at approximately 37,000 kph (23,000 mph).

"From central Florida to the surface of a comet in six months is almost instant gratification from a deep space mission viewpoint," said Rick Grammier, Deep Impact project manager at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif. "It is going to be an exciting mission, and we can all witness its culmination together as Deep Impact provides the planet with its first man-made celestial fireworks on our nation's birthday, July 4th," he said.

The fireworks will be courtesy of a 1-by-1-meter (39-by-39 inches) copper-fortified probe. It is designed to obliterate itself, as it excavates a crater possibly large enough to swallow the Roman Coliseum. Before, during and after the demise of this 372-kilogram (820-pound) impactor, a nearby spacecraft will be watching the 6-kilometer (3.7-mile) wide comet nucleus, collecting pictures and data of the event.

"We will be capturing the whole thing on the most powerful camera to fly in deep space," said University of Maryland astronomy professor Dr. Michael A'Hearn, Deep Impact's principal investigator. "We know so little about the structure of cometary nuclei that we need exceptional equipment to ensure that we capture the event, whatever the details of the impact turn out to be," he explained.

Imagery and other data from the Deep Impact cameras will be sent back to Earth through the antennas of the Deep Space Network. But they will not be the only eyes on the prize. NASA's Chandra, Hubble and Spitzer space telescopes will be observing from near-Earth space. Hundreds of miles below, professional and amateur astronomers on Earth will also be able to observe the material flying from the comet's newly formed crater.

Deep Impact will provide a glimpse beneath the surface of a comet, where material and debris from the solar system's formation remain relatively unchanged. Mission scientists are confident the project will answer basic questions about the formation of the solar system, by offering a better look at the nature and composition of the celestial travelers we call comets.

"Understanding conditions that lead to the formation of planets is a goal of NASA's mission of exploration," said Andy Dantzler, acting director of the Solar System division at NASA Headquarters, Washington. "Deep Impact is a bold, innovative and exciting mission which will attempt something never done before to try to uncover clues about our own origins."

With a closing speed of about 37,000 kph (23,000 mph), what of the washing machine-sized impactor and its mountain-sized quarry?

"In the world of science, this is the astronomical equivalent of a 767 airliner running into a mosquito," said Don Yeomans, a Deep Impact mission scientist at JPL. "It simply will not appreciably modify the comet's orbital path. Comet Tempel 1 poses no threat to the Earth now or in the foreseeable future," he added.

Ball Aerospace & Technologies in Boulder, Colo., built NASA's Deep Impact spacecraft. It was shipped to Florida Oct. 17 to begin final preparations for launch. Liftoff is scheduled for Jan. 8 at 1:39:50 p.m. EST, with another opportunity 40 minutes later.

Principal Investigator A'Hearn leads the mission from the University of Maryland, College Park. JPL manages the Deep Impact project for the Science Mission Directorate at NASA Headquarters. Deep Impact is a mission in NASA's Discovery Program of moderately priced solar system exploration missions.

Explore further: Earth survived near-miss from 2012 solar storm: NASA

add to favorites email to friend print save as pdf

Related Stories

British asteroid mapper sent into orbit

Jul 10, 2014

UK technology that can create thermal maps of asteroids, giving us vital information about how their trajectories might change, is about to undergo trials in space.

Celebrating a decade of the Submillimeter Array

Jun 25, 2014

(Phys.org) —Ten years ago, eight antennas on the summit of Mauna Kea, Hawai'i, united to form a telescope unlike any other. Since then the Submillimeter Array (SMA) has examined the universe in unprecedented ...

Radio signals from Jupiter could aid search for life

Jun 12, 2014

Powerful radio signals that Jupiter generates could be used to help researchers scan its giant moons for oceans that could be home to extraterrestrial life, according to a recent study submitted to the journal ...

Recommended for you

Satellite galaxies put astronomers in a spin

18 hours ago

An international team of researchers, led by astronomers at the Observatoire Astronomique de Strasbourg (CNRS/Université de Strasbourg), has studied 380 galaxies and shown that their small satellite galaxies almost always ...

User comments : 0