NASA Satellites See El Nino Creep in From the Indian Ocean

Dec 05, 2004
NASA Satellites See El Nino Creep in From the Indian Ocean

Scientists studied the winds and rains in the eastern Indian Ocean for hints at developing El Ninos. They used that information to create an "Index" or gauge that accurately predicted the El Nino of 2002-2003.
El Nino is signaled by a warming of the ocean surface off the western coast of South America that occurs every 4 to 12 years when cold, nutrient-rich water does not come up from the ocean bottom. It causes die-offs of plankton and fish and affects Pacific jet stream winds, altering storm tracks and creating unusual weather patterns in various parts of the world.

The researchers used the TRMM and QuikScat satellites to track wind, rainfall, and warmer sea surface temperatures moving from the Indian to the Pacific Ocean in early 2002, before the 2002-03 El Nino.

During the winter of 2001-2002, climate conditions in the eastern Indian Ocean changed dramatically. Westerly winds increased and the weather flip-flopped from dry to wet.

Scott Curtis, Assistant Professor at East Carolina University, Greenville, N.C., and Robert Adler, George Huffman and Guojun Gu, all of NASA's Goddard Space Flight Center, Greenbelt, Md. used NASA's Tropical Rainfall Measuring Mission (TRMM) and QuikScat satellite data ranging from November 2001 to March 2002.

"This study expands on recent work linking rain and wind changes over the last 25 years to the development of El Ninos," Curtis said. The earlier study examined changes in rainfall from week to week, and the total amount of wintertime rainfall in key locations of the eastern Indian Ocean. They found these data points could be a sign of early shifts in climate leading to the development of El Ninos since 1979. The researchers then examined winds recreated by computer models, but did not find the same connections.

Curtis suggests that for the 1979-2002 period changes in rainfall in the eastern Indian Ocean are a better predictor for the onset of an El Nino than winds. Therefore, the El Nino Onset Index (EOI) was created using only rainfall data.

The scientists noticed the first weather system from the eastern Indian Ocean followed the Equator and the second traveled further south closer to Australia. In the second example, warm waters appeared first, followed by heavy rainfall in the eastern Indian Ocean. Then, strong westerly winds and a cooling of the sea surface developed. These events moved through the ocean area between Indonesia and Australia, suggesting a connection between rising air, wind, and sea surface temperatures over a period of days. These studies provided a basis for how changes in the East Indian Ocean are linked to following events in the Pacific Ocean, including the start of El Nino events.

There is a weak El Nino underway, according to the National Oceanic and Atmospheric Administration, which the EOI did not predict. Curtis explained that the EOI may not be sensitive enough to register weak episodes. In addition, the current El Nino is not basin-wide, as the far eastern Pacific Ocean is cooler than normal.

In the future, NASA will launch the Global Precipitation Measurement Mission which will contribute to the EOI, as TRMM does currently.

Source: by Rob Gutro, NASA Goddard Space Flight Center

Explore further: Innovative use of pressurant extends MESSENGER's mission, enables collection of new data

add to favorites email to friend print save as pdf

Related Stories

Australia's critically endangered animal species

Dec 06, 2012

Australia has 96 critically endangered animal species, listed below. Over the coming months, we will be publishing a profile of each of them, looking at the threats to their survival, what's being done to ...

Recommended for you

The top 101 astronomical events to watch for in 2015

Dec 24, 2014

Now in its seventh year of compilation and the second year running on Universe Today, we're proud to feature our list of astronomical happenings for the coming year. Print it, bookmark it, hang it on your ...

NASA image: Frosty slopes on Mars

Dec 24, 2014

This image of an area on the surface of Mars, approximately 1.5 by 3 kilometers in size, shows frosted gullies on a south-facing slope within a crater.

Can astronomy explain the biblical Star of Bethlehem?

Dec 24, 2014

Bright stars top Christmas trees in Christian homes around much of the world. The faithful sing about the Star of Wonder that guided the wise men to a manger in the little town of Bethlehem, where Jesus was ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.