Researchers study how ice melts in contact with soil

Jun 19, 2004
Sketch of the experimental setup

A team of scientists from the Max Planck Institute for Metals Research in Stuttgart (Germany) and the ESRF in France has studied how ice starts to melt at temperatures as low as - 17ºC. This can occur when ice is in contact with SiO2, a material commonly found in soil. Below the melting temperature of ice, a layer much denser than ‘regular’ water forms between the ice and the SiO2. The researchers were able to observe such changes occurring thanks to the powerful X-rays at the ESRF. These results may help to explain natural phenomena such as how glaciers slide or the stability of permafrost. The results of this study have just been published in Physical Review Letters.

Water is well known for its strange properties such as its expansion during the transition from liquid to solid. At school, students learn that the density of water is 1 g/cm3. This is somewhat of an over simplification, however, due to the complex behaviour and relationships between water molecules. In reality water is thought to exhibit density fluctuations between a high-density liquid (HDL) and a low-density liquid (LDL) on very short time scales.

The team of scientists working at the ESRF discovered an odd water layer thanks to the high-energy X-ray microbeams of the synchrotron. They started by attaching crystalline ice onto silicon dioxide. The 24 mm long sample was kept in a specially-designed chamber in which the temperature of the sample could be stabilised and accurately controlled. As the X-rays penetrated the sample to the interface between water and silicon dioxide, the researchers started heating it from -25ºC to 0ºC. By the time the structure reached the melting point, the sample already contained a 5 nm layer of water. This water was found to be 20% more compact than normal water, having a density of 1.2 g/cm3.

These results represent a step forward in understanding the behaviour of ice. They may help explain natural processes such as the movement of glaciers. The motion of glaciers can mainly be explained by the internal deformation induced by gravity, (being relatively slow at around only 10 m/year). Another process which is thought to contribute to this movement is basal sliding. Basal sliding can occur ten times faster when the base of the ice is near the melting point and some water is present to enhance glacier movement. Nevertheless, observing the results of the experiment performed at the ESRF, this pre-melting phase at a lower temperature than the melting point could support a basal sliding theory.

The ramifications of this study are not only confined to glaciers. Permafrost is another example where a lower melting temperature could further our understanding. Permafrost describes rock or soil composite structures that remain below 0ºC for two or more years and often contain more than 30% ice. Permafrost areas cover large inhabited regions, yet the interfacial-melting phenomenon is not well understood. The results confirmed by the team of researchers at the ESRF could be important for civil engineering projects within these regions.

The results of this experiment open the way for new research: “we will study how the ice behaves in contact with different solids instead of silicon dioxide”, explains Veijo Honkimäki, one of the authors of the paper.

Source of this news release: EUROPEAN SYNCHROTRON RADIATION FACILITY

Publication: S. Engemann et al. Interfacial melting of ice in contact with SiO2, PHYSICAL REVIEW LETTERS, 92, 205701 (2004).

Explore further: Unexpected new mechanism reveals how molecules become trapped in ice

add to favorites email to friend print save as pdf

Related Stories

The threat of global sea level rise

14 hours ago

Changes taking place in the oceans around Antarctica could result in an abrupt rise in global sea level, according to a Victoria University of Wellington led study.

Water in the solar system predates the Sun

Sep 25, 2014

Water was crucial to the rise of life on Earth and is also important to evaluating the possibility of life on other planets. Identifying the original source of Earth's water is key to understanding how life-fostering ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

Native vegetation makes a comeback on Santa Cruz Island

Sep 17, 2014

On islands, imported plants and animals can spell ecological disaster. The Aleutians, the Galápagos, the Falklands, Hawaii, and countless other archipelagoes have seen species such as rats, goats, brown ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

8 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

12 hours ago

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

15 hours ago

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 0