The effects of hydrogen on growing carbon nanotubes

Oct 05, 2010

Carbon nanotubes -- long, hollow cylinders of carbon billionths of a meter in diameter -- have many potential uses in nanotechnology, optics, electronics, and many other fields. The exact properties of nanotubes depend on their structure, and scientists as yet have little control over that structure, which is determined during the initial formation -- or growth -- of the nanotubes. In fact, says chemical engineer and materials scientist Eray Aydil of the University of Minnesota, "we do not know precisely how the nanotubes grow."

In a paper in the American Institute of Physics' , Aydil, professor of chemical engineering and materials science and the Ronald L. and Janet A. Christenson Chair in Renewable Energy, and his colleagues shed new light on the process. In particular, the researchers examined the influence of hydrogen gas.

"Carbon nanotubes grow from a metal catalyst particle that is immersed in a gas like methane," Aydil explains. "Sometimes is also added and it was found that a little bit of hydrogen helps to grow carbon nanotubes with nice straight walls and with few defects. However, too much hydrogen addition gives fibers with thick walls, instead of nanotubes, or no growth at all."

To understand why, Aydil and colleagues used and other methods to systematically image and characterize the effects of increasing concentrations of hydrogen. "It turns out that the iron metal catalysts turn to iron carbide by reacting with the carbon in methane. Iron carbide is a hard material that is not easily deformed, and carbon nanotubes grown from such catalysts tend to have nice straight walls," he says.

Adding more hydrogen to the mix causes iron carbide to turn into iron -- which is more malleable and ductile, and "deforms into shapes that give rise to more fiber-like structures rather than hollow carbon nanotubes," he says. At higher concentrations, hydrogen etches the forming carbon nanotubes, "and growth stops all together. It is the interaction of the hydrogen with the catalysts and its effect on the catalyst's structure that controls the structure."

Explore further: Pinpoint laser heating creates a maelstrom of magnetic nanotextures

More information: The article, "Effect of Hydrogen on Catalyst Nanoparticles in Carbon Nanotube Growth" by Eray S. Aydil, Michael J. Behr, Elizabeth A. Gaulding and K. Andre Mkhoyan (University of Minnesota) appears in the Journal of Applied Physics. link.aip.org/link/japiau/v108/i5/p053303/s1

Provided by American Institute of Physics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

The March of the Carbon Nanotubes

Mar 03, 2008

Stanford Synchrotron Radiation Laboratory (SSRL) researchers have surpassed by a surprising margin the Department of Energy's goal for storing hydrogen within a unique material called carbon nanotubes. The ...

Carbon Nanotubes Make Fuel Cells Cheaper

Feb 09, 2009

(PhysOrg.com) -- As fuel cells are becoming more popular due to their potential use in applications such as hydrogen-powered vehicles, auxiliary power systems, and electronic devices, the need for the precious ...

A recipe for controlling carbon nanotubes

Sep 20, 2009

Nanoscopic tubes made of a lattice of carbon just a single atom deep hold promise for delivering medicines directly to a tumor, sensors so keen they detect the arrival or departure of a single electron, a replacement for ...

Recommended for you

Chemically driven micro- and nanomotors

Dec 17, 2014

At least since the movie "The Fantastic Voyage" in 1966, in which a submarine is shrunk down and injected into the blood stream of a human, people have been toying with the idea of sending tiny "micromachines" ...

Pyramid nanoscale antennas beam light up and down

Dec 17, 2014

Researchers from FOM Institute AMOLF and Philips Research have designed and fabricated a new type of nanoscale antenna. The new antennas look like pyramids, rather than the more commonly used straight pillars. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.