Storing carbon in rocks may help fight against climate change

Oct 05, 2010

(PhysOrg.com) -- As climate change continues to emerge as the biggest challenge of the 21st century, the race to come up with novel ways to deal with the threat has become more urgent than ever. Carbon capture and storage – which involves removing carbon dioxide, the main contributor of greenhouse gas emissions, from the atmosphere and storing it elsewhere – is one of the leading technological solutions to mitigate global climate change.

While current methods for exist, they involve depositing the gas into underground aquifers or depleted oil reservoirs, where it remains under high pressure. Storing the gas in this way carries with it risks, such as leaks and the acidification of the groundwater.

Now the U.S. Department of Energy has awarded Yale University $2 million to research an alternative approach to storing called mineral sequestration — i.e., putting the gas in existing rock below ground. Yale geochemist Zhengrong Wang will head a large team of scientists from the Yale Department of Geology & Geophysics and the Yale Climate and Energy Institute (YCEI), which is also providing additional funding. The team will collaborate with scientists at the University of Hawaii and University of Maryland to investigate the chemistry and physics involved in the process.

“The Intergovernmental Panel on ’s special report on carbon dioxide capture and storage clearly indicates a significant role for research and development in this area,” said Rajendra Pachauri, chair of the IPCC and director of the YCEI. “This grant will provide a unique opportunity for developing a methodology and scientific solution for carbon storage that would eliminate a large number of the potential problems associated with conventional technologies.”

Mineral sequestration mimics the natural process of carbon storage in basalt rocks found at the bottom of oceans and on land, where carbon dioxide reacts naturally with minerals to form carbonate rock. The idea behind mineral sequestration is to speed up this process by, for example, pumping carbon dioxide into the porous basalt rock below ground, where carbonates such as magnesite would form as a result.

“Most of the carbon dioxide on Earth exists in carbonate rocks such as limestone at the bottom of the ocean,” said project member David Bercovici, chair of Yale’s Department of Geology & Geophysics and of the YCEI’s Steering Committee. “It’s this process that keeps our planet from experiencing a much worse global greenhouse, an extreme example being what we see on Venus,” where a carbon dioxide-rich atmosphere leads to surface temperatures of more than 800 degrees Fahrenheit.

Because the resulting carbonate rock is chemically stable and the carbon dioxide is not stored as a volatile gas, there is far less risk involved in mineral sequestration, Bercovici said. As part of the new study, a team of chemists, geologists and physicists will conduct lab experiments and field tests as well as develop theoretical models to study such questions as how quickly the rock is formed and at what pressures.

“Unlike geo-engineering methods for climate mitigation, such as adding unnatural substances to the atmosphere, we’re just trying to speed up a natural process,” Bercovici said. “At some point in the not-too-distant future we’re going to have to start treating carbon dioxide like nuclear waste, and there’s no better place to store this stuff.”

The Yale Climate and Energy Institute seeks to understand Earth’s climate system, ecological and social impacts of climate change, the strengths and weaknesses of current political and economic system’s ability to respond to climate change, and to provide realistic, implementable solutions to societies and communities around the world. Its mission promotes a multidisciplinary approach to learning, research, and the development of strategies that help societies contribute to solutions and adapt to the challenges of local and global climatic changes.

Explore further: NASA provides double vision on Typhoon Matmo

add to favorites email to friend print save as pdf

Related Stories

Storing carbon dioxide deep underground in rock form

Jun 17, 2010

As carbon dioxide continues to burgeon in the atmosphere causing the Earth's climate to warm, scientists are trying to find ways to remove the excess gas from the atmosphere and store it where it can cause no trouble.

Trapping Greenhouse Gases (Without Leaks)

Nov 19, 2008

Of all the possible ways of reducing future greenhouse gas emissions, one of the most immediately feasible is carbon dioxide "sequestration," which involves compressing the gas into a liquid and piping it deep underground ...

Carbon capture has a sparkling future

Apr 01, 2009

(PhysOrg.com) -- New research shows that for millions of years carbon dioxide has been stored safely and naturally in underground water in gas fields saturated with the greenhouse gas. The findings - published ...

Recommended for you

Fires in the Northern Territories July 2014

8 hours ago

Environment Canada has issued a high health risk warning for Yellowknife and surrounding area because of heavy smoke in the region due to forest fires. In the image taken by the Aqua satellite, the smoke ...

How much magma is hiding beneath our feet?

9 hours ago

Molten rock (or magma) has a strong influence on our planet and its inhabitants, causing destructive volcanic eruptions and generating some of the giant mineral deposits. Our understanding of these phenomena ...

Oso disaster had its roots in earlier landslides

11 hours ago

The disastrous March 22 landslide that killed 43 people in the rural Washington state community of Oso involved the "remobilization" of a 2006 landslide on the same hillside, a new federally sponsored geological study concludes.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ITFarmer
not rated yet Oct 12, 2010
How about this idea: When a Marcellus Shale well in PA is no longer producing gas, convert the shale into a carbon storage pit by filling the cracks in the rocks with carbon gas, then pumping in cement to seal the well.

Not only would we benefit from using the gas currently there, we could offset carbon levels by storing the carbon nearly a mile underground.