Key leukemia defense mechanism discovered

Sep 30, 2010

Virginia Commonwealth University Massey Cancer Center researcher Steven Grant, M.D., and a team of VCU Massey researchers have uncovered the mechanism by which leukemia cells trigger a protective response when exposed to a class of cancer-killing agents known as histone deacetylase inhibitors (HDACIs). The findings, published in the Journal of Biological Chemistry, could lead to more effective treatments in patients with leukemia and other cancers of the blood.

"Our findings provide new insights into the ways such develop resistance to and survive treatment," says Grant, associate director for translational research and professor of medicine. "This knowledge will now allow us to focus our efforts on strategies designed to prevent these self-protective responses, potentially rendering the cancer cell incapable of defense and increasing the effectiveness of therapy."

The discovery centers on modification of a protein known as NEMO. Researchers have known for some time that HDACIs trigger a protective response in cells by activating a survival signaling pathway known as NF-κB, which limits the ability of HDACIs to initiate a cancer cell suicide program known as apoptosis. However, it was previously thought this process occurred through activation of receptors residing on the cancer cell surface. What VCU Massey researchers discovered was that HDACIs initially induce DNA damage within the cell nucleus, leading to modification of the NEMO protein, which then triggers the cytoprotective NF-κB pathway. By disrupting modifications of the NEMO , NF-κB activation can be prevented, and as a consequence, the cancer-killing capacity of HDACIs increases dramatically.

HDACIs represent an approved form of treatment for certain forms of lymphoma, and VCU Massey Cancer Center has been working for over seven years to develop strategies designed to improve their effectiveness in leukemia and other blood cancers. Grant's team is now focusing on ways to capitalize on this discovery by designing strategies that interrupt NEMO modifications through the use of pharmacologic agents and other means.

"Our goal is to move these findings from the laboratory to the bedside as quickly as we possibly can. There are currently several drugs in early stages of development that hold promise in disrupting the NEMO-related NF-κB pathway, but further research defining their safety and effectiveness will be required before we can incorporate them into new therapies," says Grant.

Explore further: New tool identifies therapeutic proteins in a 'snap'

add to favorites email to friend print save as pdf

Related Stories

A paradigm shift in immune response regulation

Mar 19, 2009

Over the past decade various pieces of the puzzle how signal transmission controls immunity have been coming together. Now, in Cell an international team reports a paradigm shift in the regulation of immune response. Their ...

Research finds new link between inflammation and cancer

Aug 16, 2010

Virginia Commonwealth University Massey Cancer Center researchers have uncovered a new link between chronic inflammation and cancer. Although cancers do not always cause inflammation, chronic inflammation is known to help ...

Researchers induce cell death in leukemia

Apr 16, 2007

Researchers from the Virginia Commonwealth University Massey Cancer Center today presented preclinical research at the American Association of Cancer Research's annual meeting suggesting the potential of a new combination ...

Recommended for you

New tool identifies therapeutic proteins in a 'snap'

Aug 21, 2014

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Treating pain by blocking the 'chili-pepper receptor'

Aug 20, 2014

Biting into a chili pepper causes a burning spiciness that is irresistible to some, but intolerable to others. Scientists exploring the chili pepper's effect are using their findings to develop a new drug ...

Moving single cells around—accurately and cheaply

Aug 19, 2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette—a common laboratory tool that's been tweaked slightly. They describe this ...

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

User comments : 0