Inertial measurement unit with quartz gyro-sensors developed by Epson Toyocom

Sep 30, 2010

Epson Toyocom Corp. today announced that it has begun commercial development of a highly compact, accurate, and stable inertial measurement unit (IMU). The IMU employs technology the company has accumulated in the development of QMEMS quartz gyro-sensors. Epson Toyocom plans to make engineering samples available in April 2011.

Epson Toyocom already provides a variety of sensing products, including six-axis for motion sensing and gyro-sensors for use in camera-shake correction and high-accuracy navigation systems. The company has also been providing customers with support and system solution support for its sensing devices. Epson Toyocom launched the IMU development project with the aim of using the know-how accumulated in the course of providing customer service to provide efficient and high-performance inertia measurement.

The IMU currently under development is a compact device that employs ±300 degrees per second triple gyroscopes on three axes and three ±3-G tri-axis accelerometers. It exhibits excellent angular rate characteristics, with gyro bias instability less than 6 degrees per hour and angle random walk performance less than 0.24 degrees per √hr. The new IMU's instability and accuracy parameters, respectively, are approximately 25% and 12.5% better than comparable IMUs available in the market. Technology for adding highly accurate compensations enables the IMU to show excellent bias-temperature stability (instability less than 0.005 degree per second /°C) across the operating temperature range. This represents an approximately 50% improvement in bias-temperature stability compared to comparable IMUs.

Sensor stability and miniaturization are generally mutually opposing. However, Epson Toyocom has fine-tuned its QMEMS technology to enable it to downsize the device package for easy assembly in lightweight applications and mobile systems without sacrificing stability characteristics. The ease with which the IMU can be handled will help lower the technical barriers for customers wanting to offer inertial measurement and allow them to provide on-board inertial motion analysis or control to applications with minimal time and engineering expense.

The IMU is being developed for a wide variety of applications in areas such as industrial system motion analysis and control, moving object control, and vibration control and stabilization. Excellent stability, accuracy, and other characteristics, combined with a compact form factor, will make it easy for customers to use the IMU in new industrial applications or differentiate existing applications, accelerating the spread of inertial measurement in these markets.

Explore further: Infineon offers application optimized bipolar power modules introducing cost-effective solder bond modules

add to favorites email to friend print save as pdf

Related Stories

World's Smallest Gyro-Sensor

Aug 03, 2004

Seiko Epson Corporation ("Epson") today announced that a joint development effort with NGK Insulators, Ltd. ("NGK") has succeeded in developing the smallest*1 gyro-sensor of its kind in the world. The XV-3500CB, ...

Recommended for you

Audi to develop Tesla Model S all-electric rival

12 hours ago

The Tesla Model S has a rival. Audi is to develop all-electric family car. This is to be a family car that will offer an all-electric range of 280 miles (450 kilometers), according to Auto Express, which ...

A green data center with an autonomous power supply

18 hours ago

A new data center in the United States is generating electricity for its servers entirely from renewable sources, converting biogas from a sewage treatment plant into electricity and water. Siemens implemented ...

After a data breach, it's consumers left holding the bag

18 hours ago

Shoppers have launched into the holiday buying season and retailers are looking forward to year-end sales that make up almost 20% of their annual receipts. But as you check out at a store or click "purchase" on your online shopping cart ...

Can we create an energy efficient Internet?

19 hours ago

With the number of Internet connected devices rapidly increasing, researchers from Melbourne are starting a new research program to reduce energy consumption of such devices.

Brain inspired data engineering

19 hours ago

What if next-generation ICT systems could be based on the brain's structure and its cognitive and adaptive processes? A groundbreaking paradigm of brain-inspired intelligent ICT architectures is being born.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.