Not just an innocent bystander: Unusual suspect holds the secret for new approach to treat severe sepsis

Sep 29, 2010

Severe sepsis, a disease characterised by a sudden drop in blood pressure and progressive organ dysfunction following infection, remains one of the most common causes of mortality in intensive care units worldwide. Even under the best possible medical conditions, mortality rates range between 30 and 70%. A research team from the Instituto Gulbenkian de Ciencia, Portugal, led by Miguel Soares, found that free heme, released from red blood cells during infection, is the cause of organ failure, leading to the lethal outcome of severe sepsis.

Moreover this team found that the of free heme can be overcome by hemopexin, a naturally occurring molecule that neutralises free heme. These findings, published in the latest edition of the journal , open the door to new ways of monitoring and eventually treating severe .

In most cases, severe sepsis is triggered by an infection, that is, the invasion of our body by a microbe (pathogen). The disease is known to develop from an uncontrolled reaction against the infectious agent, rather than by the infectious agent itself. Through a series of experiments conducted in mice, Miguel Soares and colleagues found that hemoglobin is the unusual suspect behind this uncontrolled reaction. Hemoglobin is normally enclosed inside red blood cells where it carries oxygen. It associates with four other molecules, called heme groups, each containing an iron atom that binds oxygen. During sepsis, however, is released from (a process called hemolysis) and looses its heme groups that become toxic. These can cause cells in several organs to die, lead to the dysfunction of multiple organs and eventually death.

Rasmus Larsen, first author of this study, explains, "We first demonstrated a role for heme in worsening organ injury during sepsis. We found that as heme accumulates in the blood, the levels of a hemopexin, a molecule that neutralises the toxic effects of free heme, decreases, suggesting a way to control the harmful effects of free heme. We started a very productive collaboration with Ann Smith (University of Missouri) that had been working with hemopexin for many years. She sent us enough of this protein that we could administer it to mice after they started developing severe sepsis. We found that when we did this the general health status of these animals improved markedly, with the majority of them surviving the infection, as compared to the non-treated mice that died."'

The team took their research a step further: in collaboration with Fernando Bozza at the Fundacao Oswaldo Cruz in Rio de Janeiro, Brazil, they showed that amongst infected patients diagnosed with septic shock in the intensive care unit, those that died had lower levels of circulating hemopoxin in the blood, as compared to those that survived, confirming the observations made in mice by Rasmus Larsen at the IGC. Miguel Soares and Rasmus Larsen explain, "These observations suggest that hemopoxin may be used as a predictor of mortality in patients developing severe sepsis: if levels are too low, we can expect a more severe outcome of the disease, and possible death".

These findings may lead to a new approach to treat severe sepsis. Miguel Soares continues, "While many drugs are efficient in killing the pathogen that triggers severe sepsis, on its own this approach is not sufficient to prevent mortality. By administering hemopexin, which provides protection against organ destruction, we open the way for an alternative way to treat sepsis (aside from killing the pathogen) that may potentially save the lives of thousands of patients in intensive care units worldwide."

Explore further: The impact of bacteria in our guts

More information: Larsen, R. Gozzelino, V. Jeney, L. Tokaji, F. A. Bozza, A. M. Japiassú, D. Bonaparte, M. M. Cavalcante, Â. Chora, A. Ferreira, I. Marguti, S. Cardoso, N. Sepúlveda, A. Smith, M. P. Soares, A central role for free heme in the pathogenesis of severe sepsis. Sci. Transl. Med. 2, 51ra71 (2010).

add to favorites email to friend print save as pdf

Related Stories

Naturally occurring protection against severe malaria

Aug 17, 2009

In a study to be published in the next issue of the Proceedings of the National Academy of Sciences (PNAS), researchers at the Instituto Gulbenkian de Ciência, in Portugal, show that an anti-oxidant drug can protect again ...

Surviving sepsis program -- increased compliance gets results

Sep 03, 2009

A 'surviving sepsis' in-hospital project has been shown to improve the care of patients with sepsis. The educational program for early management of patients with septic shock, described in BioMed Central's open access journal ...

Surprising interactions of diabetes mellitus and sepsis

Feb 13, 2009

Diabetic patients are less likely to suffer from acute respiratory failure during severe sepsis. Researchers writing in BioMed Central's open access journal Critical Care studied 930 million hospitalisations over a 25-yea ...

Recommended for you

The impact of bacteria in our guts

Aug 22, 2014

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

Aug 22, 2014

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

Aug 22, 2014

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0