Proteins to yield new clues in fight against osteoporosis

Sep 29, 2010

A $1.76 million study at Rensselaer Polytechnic Institute seeks to identify new methods of diagnosing osteoporosis and inform the development of next-generation drugs to treat the bone disease.

The five-year study, funded by the U.S. National Institutes of Health (NIH), is led by Deepak Vashishth, professor and head of the Department of Biomedical Engineering at Rensselaer. Partnering with researchers from Yale University and the Hospital of Special Surgery, Vashishth's will investigate what role two proteins, osteocalcin and osteopontin, play in bone fractures over time.

"Age-related are a major health problem in the United States, and the risk of suffering this kind of fracture increases as we get older and our bones grow more fragile," Vashishth said. "Our study examines how the proteins osteocalcin and osteopontin may impact bone fragility and fracture. We're confident that our results will lead to new methods of diagnosing , provide new targets for drug development, and advance the fight against this devastating disease."

The new study builds from Vashishth's past research into the effects of modifying the molecular composition of certain proteins in bone, better understanding the relationship of bone biology and bone fracture, and developing new treatments to combat and reverse bone fragility. While bone mass historically was considered to be a significant predictor of bone fracture risk, current studies show to be a key contributor, but not the sole cause, of bone fracture. This means other factors, such as the molecular biology of an individual's bones, need to be examined in order to more fully understand age-related bone fragility.

Bones are comprised primarily of bone matrix, made up of woven or stacked cells. The proteins located between these cells, called extracellular matrix proteins, may offer some clues to unlocking the secret of bone fragility. Evidence suggests two such proteins, osteocalcin and osteopontin, can influence the formation of nanoscale damage and microcracks in bone. However, very little is known about how or why this works.

"We will investigate the effects of osteocalcin and osteopontin on damage morphology and bone fragility at the nanoscale, microscale, and macrostructural scale," Vashishth said. "We believe our results will show, conclusively, how the combination of nanoscale damage, paired with creation of nanoscale bands affected by the proteins, actually impact the overall structure and fragility of the bone. Once this is established, we and other researchers will be able to start working on new treatments for osteoporosis and related bone diseases."

Explore further: Researchers find that coronary arteries hold heart-regenerating cells

add to favorites email to friend print save as pdf

Related Stories

The Medical Minute: What is osteoporosis? Why now? Why me?

Jul 29, 2009

Osteoporosis comes from a Latin term which means "holes in the bone." In reality it is a skeletal disease characterized by low bone mineral density and structural deterioration of bone, leading to bone weakness and increased ...

Accelerated bone turnover remains after weight loss

Jul 28, 2008

When a person is losing a significant amount of weight, they expect to notice changes in their body. However, they may overlook changes happening in their bones. During weight loss through calorie-restricted diets, bones ...

Recommended for you

Student seeks to improve pneumonia vaccines

9 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

11 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments : 0