New technique allows 3-D visualization of quantum property

Sep 29, 2010

Scientists at the U.S. Department of Energy’s Argonne National Laboratory have developed a new technique that maps the magnetic vector potential — one of the most important electromagnetic quantities and a foundation of quantum mechanics — in three dimensions.

"The vector potential of magnetic structures is essential to the understanding of several areas in condensed matter physics and magnetism on a quantum level, but until now it has never been visualized in three dimensions,” Argonne Distinguished Fellow Amanda Petford-Long said. “If you want to understand the way magnetic nanostructures behave, then you have to understand the magnetic vector potential.”

According to Petford-Long, research into the creation and manipulation of magnetic nanostructures will enable the development of the next generation of in the form of magnetic .

Petford-Long and post-doctoral researcher Charudatta Phatak used a (TEM) to examine a series of different nanostructures. The theoretical and numerical reconstruction procedure was developed in collaboration with Prof. Marc De Graef at Carnegie Mellon University.

Using the TEM, the researchers were able to take images from several different angles and then rotate the structure by 90 degrees until they had several series of images. The scientists then extracted the vector potential by reconstructing how the electrons in the material shifted phase.

“The development of next generation magnetic sensors and devices requires studying the physics underlying the magnetic interactions at the nanoscale,” Phatak said. “This 3-D map is the first step to truly understanding those interactions.”

A paper on this research has been published in the June 25 issue of (Vol. 104, No. 25).

Explore further: The unifying framework of symmetry reveals properties of a broad range of physical systems

Related Stories

Recommended for you

What time is it in the universe?

Aug 29, 2014

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Sep 29, 2010
"but until now it has never been visualized in three dimensions"

I guess he's never been on PhysOrg, where children's bubble blowing on soap scum has been around since Galileo to explain "dense aether," which is of course true in every way.