Nanotechnology brings personalized therapy one step closer to reality

Sep 29, 2010

A novel technology can make nanoscale protein measurements, which scientists can use in clinical trials to learn how drugs work.

"We are making progress toward the goal of understanding how drugs work in different individuals," said Alice C. Fan, M.D., instructor in the division of oncology at Stanford University School of Medicine. "Using new technologies makes it possible to measure effects of therapeutic agents in and different within our patients. Now that we can make these measurements, we are one step closer to being able to tailor therapy for each patient."

This research was presented at the Fourth AACR International Conference on Molecular Diagnostics in Cancer Therapeutic Development.

Currently, research on activity requires patients to undergo several invasive biopsies to generate enough cells for testing. Fan and colleagues developed a highly sensitive test called the nano-immunoassay (NIA) that can make nanoscale protein measurements in cells from minimally invasive blood draws or fine-needle aspirates. The researchers used a microfluidic instrument called the Nanopro1000 (Cell Biosciences).

After studying NIA in several clinical trial settings, diagnostic testing results showed that protein profiles in the RAS and MAP kinase pathways could distinguish tumor cells from normal cells. Researchers could use these profiles to group different tumor types.

The researchers analyzed proteins in cells from patients with lymphoma or myelodysplastic syndrome. Two novel treatments for these diseases had a measurable effect on in tumor cells, Fan said.

Finally, the team used NIA in conjunction with flow cytometry to determine a drug's differential effects in tumor cells vs. normal cells within each patient.

"These results have immediate application because they can identify which drugs actually hit protein targets in patient cells," Fan said.

In the long-term, nanoscale approaches may eventually affect all stages of cancer care.

"The ability to make meaningful protein measurements using minute quantities of tissue will allow for earlier discovery of tumors, characterization of small amounts of residual disease and detection of recurrence," Fan said.

NIA could be particularly useful in studying rare cell populations such as circulating tumor cells and cancer stem cells.

Explore further: No increased risk of second cancers with radiotx in pelvic CA

add to favorites email to friend print save as pdf

Related Stories

Cancer stem cells: know thine enemy

Dec 21, 2007

Stem cells -- popularly known as a source of biological rejuvenation -- may play harmful roles in the body, specifically in the growth and spread of cancer. Amongst the wildly dividing cells of a tumor, scientists have located ...

Drug/radiation combo may help shrink established tumors

Aug 25, 2008

Researchers may be closer to understanding why anti-cancer drugs such as Ipilimumab, which boost the tumor-killing power of immune cells, haven't fared well in clinical trials. The new study, which describes a way to enhance ...

Recommended for you

Scientists zero in on how lung cancer spreads

Dec 24, 2014

Cancer Research UK scientists have taken microscopic images revealing that the protein ties tethering cells together are severed in lung cancer cells - meaning they can break loose and spread, according to ...

Scientists identify rare cancer's genetic pathways

Dec 24, 2014

An international research team, including four Simon Fraser University scientists, has identified the "mutational landscape" of intrahepatic cholangiocarcinoma (ICC), a rare, highly fatal form of liver cancer that disproportionately ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.