Paper shows enzyme-controlled movement of DNA polymer through a nanopore

Sep 26, 2010

Research published this week in Nature Nanotechnology shows a new method of enzyme-controlled movement of a single strand of DNA through a protein nanopore. The paper, by researchers at the University of California Santa Cruz (UCSC), represents a key step towards nanopore sequencing of DNA strands.

The publication describes the observation of single stranded DNA (ssDNA) as it translocates through a protein nanopore, alpha hemolysin (AHL). Movement of the ssDNA was controlled by polymerase-facilitated replication of individual DNA molecules. This movement could be initiated under electronic control. Polymerase activity was shown to be blocked in solution when the ssDNA was not at the nanopore opening, however capture of the strand by the pore removes a blocking strand of and allows the to function on the trapped strand.

UCSC researchers are collaborating with Oxford Nanopore Technologies Ltd in the development of a new generation of electronic, single-molecule DNA sequencing technology. In the 'strand sequencing' method, current through a nanopore is measured as a DNA polymer passes through that pore. Changes in this current are used to identify the DNA bases on the , in sequence. This paper addresses a key challenge for DNA strand sequencing: fine control of the translocation of the through the nanopore, at a rate that is consistent and slow enough to enable accurate identification of individual DNA bases. The Nature Nanotechnology work shows for the first time that the motion of a strand can be controlled using electronic feedback and that an enzyme can move a strand against a field while located on top of the nanopore.

"The techniques described in this paper are an advance towards electronic, single molecule DNA sequencing of DNA strands" said investigator Professor Mark Akeson of the University of California, Santa Cruz. "Electronic control of DNA translocation through a protein nanopore is a scientific goal that we have strived towards for years and these methods are now forming the basis for further work in our laboratories. We are excited by our collaboration with Oxford Nanopore, whose parallel sensing strategy is impressive."

Explore further: Gold nanoparticles help target, quantify breast cancer gene segments in a living cell

More information: Replication of individual DNA molecules under electronic control using a protein nanopore. Felix Olasagasti, Kate R. Lieberman, Seico Benner, Gerald M. Cherf, Joseph M. Dahl, David W. Deamer and Mark Akeson Nature Nanotechnology September 2010. DOI: 10.1038/NNANO.2010.177

Provided by Feinstein Kean Healthcare

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Nanopore Sequencing Could Slash DNA Analysis Costs

Mar 27, 2009

(PhysOrg.com) -- Over the past 5 years, researchers have been exploring the use of nanoscale pores as nucleic acid sequencing tools. In theory, such pores should generate a unique response characteristic of each of the four ...

Faster, cheaper DNA sequencing method developed

Dec 20, 2009

(PhysOrg.com) -- Boston University biomedical engineers have devised a method for making future genome sequencing faster and cheaper by dramatically reducing the amount of DNA required, thus eliminating the ...

DNA through graphene nanopores

Jul 12, 2010

A team of researchers from Delft University of Technology (The Netherlands) announces a new type of nanopore devices that may significantly impact the way we screen DNA molecules, for example to read off their sequence. In ...

Recommended for you

Cloaked DNA nanodevices survive pilot mission

Apr 22, 2014

It's a familiar trope in science fiction: In enemy territory, activate your cloaking device. And real-world viruses use similar tactics to make themselves invisible to the immune system. Now scientists at ...

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

kevinrtrs
1 / 5 (3) Sep 27, 2010
"Electronic control of DNA translocation through a protein nanopore is a scientific goal that we have strived towards for years and these methods are now forming the basis for further work in our laboratories

Will the Darwinian evolutionists please stand up and explain how highly educated scientists take years to arrive at discovering this complicated issue and yet we are asked to believe that this all happened by accident, a freak of mutation and natural selection? If you combine/add up all the improbable complexities of all the individual processes in the cell you end up with miracle upon miracle of improbabilities that have to come together to form a living cell. You'd be much better off to believe in a designer. The Darwinian evolutionist emperor is wearing no clothes.

Skeptic_Heretic
not rated yet Sep 27, 2010
You're an idiot kevinrtrs. I'd recommend you start self educating, we're done doing it for you.

More news stories

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...