Ecologists find new clues on climate change in 150-year-old pressed plants

Sep 22, 2010
This is an herbarium sheet of the early spider orchid (Ophrys sphegodes) at Kew (a record from Kent for May 1, 1900). Credit: K. Robbirt.

Plants picked up to 150 years ago by Victorian collectors and held by the million in herbarium collections across the world could become a powerful - and much needed - new source of data for studying climate change, according to research published this week in the British Ecological Society's Journal of Ecology.

The scarcity of reliable long-term data on phenology - the study of natural climate-driven events such as the timing of trees coming into leaf or plants flowering each spring - has hindered scientists' understanding of how species respond to climate change.

But new research by a team of ecologists from the University of East Anglia (UEA), the University of Kent, the University of Sussex and the Royal Botanic Gardens, Kew shows that plants pressed up to 150 years ago tell the same story about warmer springs resulting in earlier flowering as field-based observations of flowering made much more recently.

The team examined 77 specimens of the early spider orchid (Ophrys sphegodes) collected between 1848 and 1958 and held at the Royal Botanic Gardens, Kew and the Natural History Museum in London. Because each specimen contains details of when and where it was picked, the researchers were able to match this with Meteorological Office records to examine how mean spring temperatures affected the orchids' flowering.

This is an early spider orchid (Ophrys sphegodes). Credit: N/A

They then compared these data with field observations of peak flowering of the same in the Castle Hill National Nature Reserve, East Sussex from 1975 to 2006, and found that the response of to temperature was identical both in herbarium specimens and field data. In both the pressed plants and the , the orchid flowered 6 days earlier for every 1oC rise in mean spring temperature.

The results are first direct proof that pressed plants in collections can be used to study relationships between phenology and climate change when field-based data are not available, as is almost always the case.

According to the study's lead author, PhD student Karen Robbirt of UEA: "The results of our study are exciting because the flowering response to spring temperature was so strikingly close in the two independent sources of data. This suggests that pressed plant collections may provide valuable additional information for climate-change studies."

"We found that the flowering response to spring temperature has remained constant, despite the accelerated increase in temperatures since the 1970s. This gives us some confidence in our ability to predict the effects of further warming on flowering times."

The study opens up important new uses for the 2.5 billion plant and animal specimens held in natural history collections in museums and herbaria. Some specimens date back to the time of Linnaeus (who devised our system of naming plants and animals) 250 years ago.

Co-author Professor Anthony Davy of UEA says: "There is an enormous wealth of untapped information locked within our museums and herbaria that can contribute to our ability to predict the effects of future climate change on many plant species. Importantly it may well be possible to extend similar principles to museum collections of insects and animals."

Phenology - or the timing of natural events - is an important means of studying the impact of climate change on plants and animals.

This is an early spider orchid (Ophrys sphegodes). Credit: N/A

"Recent climate change has undoubtedly affected the timing of development and seasonal events in many groups of organisms. Understanding the effects of recent climate change is a vital step towards predicting the consequences of future change. But only by elucidating the responses of individual species will we be able to predict the potentially disruptive effects of accelerating climate change on species interactions," he says.

Detecting phenological trends in relation to long-term climate change is not straightforward and relies on scarce long-term studies. "We need information collected over a long period to enable us confidently to identify trends that could be due to . Unfortunately most field studies are relatively brief, so there are very few long-term field data available," Professor Davy explains

Explore further: Plants with dormant seeds give rise to more species

More information: Karen M Robbirt et al (2010), 'Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes', doi: 10.1111/j.1365-2745.2010.01727.x

Related Stories

Climate Change Threatens Pollination Timing

Aug 09, 2006

In addition to the more obvious effects of climate change, such as rising sea levels and increasing storm activity, there is the potential to dramatically alter ecological communities. Dr. David Inouye, director ...

Plants take a hike as temperatures rise

Feb 10, 2009

Plants are flowering at higher elevations in Arizona's Santa Catalina Mountains as summer temperatures rise, according to new research from The University of Arizona in Tucson.

Arctic spring comes weeks earlier than a decade ago

Jun 18, 2007

In the Earth’s cold and icy far north, the harsh winters are giving way to spring weeks earlier than they did just a decade ago, researchers have reported in the June 19th issue of Current Biology. The finding in the Ar ...

Recommended for you

Plants with dormant seeds give rise to more species

13 hours ago

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Scientists tether lionfish to Cayman reefs

23 hours ago

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...