Robots could improve everyday life, do chores

Sep 21, 2010 By Anne Ju
A robotic arm hands Ashutosh Saxena a cup while his students watch. Background from left: M.Eng. student Stephen Moseson, graduate student Yun Jiang and TP Wong '10. (Jason Koski)

(PhysOrg.com) -- They're mundane, yet daunting tasks: Tidying a messy room. Assembling a bookshelf from a kit of parts. Fetching a hairbrush for someone who can't do it herself. What if a robot could do it for you?

Assistant professor of computer science Ashutosh Saxena is working to bring such robots into homes and offices. He leads Cornell's Personal Robotics Lab, which develops software for complex, high-level robotics. Among the lab's goals are programming robots that can clean up a disheveled room, assemble an Ikea bookshelf and load and unload a dishwasher -- all without human intervention.

Saxena, who joined the Cornell faculty in 2009, believes robots can make people's lives better and more productive.

"Just like people buy a car, I envision that in five to 10 years, people will buy an assistive robot that will be cheaper or about the same cost as a car," Saxena said.

One of the biggest technical challenges is endowing robots with the ability to learn in uncertain environments. It's one thing to make a robot do simple tasks: Pick up this pen. Move to the left. Do a 360. It's quite another to make a robot understand how to pick up an object it's never encountered or navigate a room it's never seen.

Saxena, who led the manipulation group in the STAIR project (Stanford Robot) at Stanford University, has researched how to make robots perceive information in cluttered and unknown environments. His work has also enabled robots to estimate depth from a single image.

"For example, if you look at a new object, how would you pick it up? If you are in a new environment, how do you figure out how far away things are?" he said.

On a typical afternoon in Upson Hall's Personal Robotics Lab, Saxena and his students can be found huddled around a computer perfecting the coding to make their robots come alive.

One of their research platforms is a robotic arm with a gripper. Using a camera, the robot evaluates an object -- say, a cup or plate -- and figures out how best to grab it. This technology will eventually integrate into the full-fledged dishwasher-loading robot.

Graduate student Yun Jiang has worked on a fast, efficient algorithm to make the identify what she calls "grasping points," or the parts of an object that would be best to grab onto. Her main contribution has been to simultaneously find both the location and orientation of the arm when it is picking up an object.

Writing such programs involves finding the balance between the specific features of an object -- from the stem of a wine glass to the handle of a brush -- and the general geometric patterns that can serve as guidelines for the robot to identify.

"Although the objects may differ in appearance, they should share some common grasping patterns, and those patterns have some features that we are looking for," Jiang said. Writing an algorithm that can identify generalized features and apply them to a wide variety of objects is a difficult challenge, Saxena added.

Another set of students works on a roving with a camera. Its job is to find an object, such as a shoe, by systematically scanning the room.

"In a cluttered room, it is notoriously difficult for today's object detection algorithms to reliably find an object as simple as a shoe," Saxena said.

The key is to not look at this task in isolation, he explained. If the three-dimensional structure of the room is known, it becomes easier to find the objects. The lab is building learning algorithms to enable roboticists to quickly combine several perception algorithms into a more reliable one.

Graduate students Congcong Li and Adarsh Kowdle presented these projects at the European Conference on Computer Vision, held in Greece Sept. 5-11. They will present again at the Neural Information Processing Systems conference in Vancouver this December.

Saxena sees the robots one day making a critical difference in people's lives -- for example, among the elderly or people with disabilities, who need help for everyday things. But robotics could also make people's lives easier in general.

"There are so many people who just want to get household chores done," he said.

Explore further: Simplicity is key to co-operative robots

add to favorites email to friend print save as pdf

Related Stories

'The robots are coming'

Jan 29, 2009

Alexander Stoytchev and his three graduate students recently presented one of their robot's long and shiny arms to a visitor. Here, they said, swing it around.

Robot fetches objects with just a point and a click

Mar 19, 2008

Robots are fluent in their native language of 1 and 0 absolutes but struggle to grasp the nuances and imprecise nature of human language. While scientists are making slow, incremental progress in their quest ...

Care-O-bot 3: Always at your service

Jul 01, 2008

Who doesn’t long for household help at times? Service robots will soon be able to relieve us of heavy, dirty, monotonous or irksome tasks. Research scientists have now presented a new generation of household ...

Robots learning from experience (w/ Video)

Aug 24, 2010

Software that enables robots to move objects about a room, building up ever-more knowledge about their environment, is an important step forward in artificial intelligence.

As robots learn to imitate

Dec 22, 2004

Can robots learn to communicate by studying and imitating humans' gestures? That's what MIRROR's researchers aimed to find out by studying how infants and monkeys learn complex acts such as grasping and transferring it to ...

Recommended for you

Simplicity is key to co-operative robots

5 hours ago

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Students turn $250 wheelchair into geo-positioning robot

15 hours ago

Talk about your Craigslist finds! A team of student employees at The University of Alabama in Huntsville's Systems Management and Production Center (SMAP) combined inspiration with innovation to make a $250 ...

Using robots to study evolution

Apr 14, 2014

A new paper by OIST's Neural Computation Unit has demonstrated the usefulness of robots in studying evolution. Published in PLOS ONE, Stefan Elfwing, a researcher in Professor Kenji Doya's Unit, has succes ...

User comments : 0

More news stories

Microsoft CEO is driving data-culture mindset

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...