Research suggests compound administered during some bone marrow transplants elevates risks

Sep 21, 2010

Research conducted at Oregon Health & Science University's Vaccine and Gene Therapy Institute may spur debate about the risks associated with administering a specific compound in some forms of bone-marrow transplantation. The research is published in the current edition of Cell Host and Microbe.

The VGTI research team, led by institute director Jay Nelson, Ph.D., studies human cytomegalovirus, a virus that may infect up to 80 percent of the American population. The exact percentage of infected citizens is unknown due to the fact that the virus causes minor symptoms or no symptoms at all in most healthy people. However, the virus can pose a significant risk in people whose immune system has been compromised, such as those infected with HIV, or patients who have had their immune systems suppressed through chemotherapy or with anti-rejection medications during transplantation.

During this specific research project, Nelson, along with M. Shane Smith, Ph.D., a postdoctoral fellow in Nelson's lab and other colleagues focused on the impact of granulocyte-colony stimulating factor, or G-CSF, on the virus. G-CSF is a hormone frequently administered to transplant donors to stimulate stem cell growth and localization of blood prior to harvesting blood-borne stem cells.

While G-CSF-induced stem cell localization to the blood does provide a more comfortable means of stem cell donation compared to the previous method of harvesting cells directly from the bone marrow, previous studies have suggested that bone marrow transplantation performed with blood-borne stem cells places recipients at double the risk for HCMV and chronic graft-versus host disease.

The VGTI research team uncovered the mechanism behind this associated risk. Using a mouse model of the disease, the scientists determined that G-CSF causes HCMV, which is in a dormant or latent state in the bone marrow, to reactivate in , thereby placing stem cell recipients at elevated risk for HCMV transmission and disease.

"Because bone marrow recipients' immune systems are so significantly compromised, this risk is very significant," said Nelson. "We believe this research will generate discussion about the proper applications for G-CSF - which continues to provide benefits - but the risk associated must also be factored into patient care."

Explore further: New biomedical implants accelerate bone healing

add to favorites email to friend print save as pdf

Related Stories

Molecule dictates how stem cells travel

Jan 14, 2006

U.S. researchers have defined a molecule that dictates how blood stem cells travel to the bone marrow and establish blood and immune cell production.

Recommended for you

New biomedical implants accelerate bone healing

9 minutes ago

A major success in developing new biomedical implants with the ability to accelerate bone healing has been reported by a group of scientists from the Department of Restorative Dentistry, University of Malaya. ...

A new way to prevent the spread of devastating diseases

17 hours ago

For decades, researchers have tried to develop broadly effective vaccines to prevent the spread of illnesses such as HIV, malaria, and tuberculosis. While limited progress has been made along these lines, ...

New molecule allows for increase in stem cell transplants

17 hours ago

Investigators from the Institute for Research in Immunology and Cancer (IRIC) at the Université de Montréal have just published, in the prestigious magazine Science, the announcement of the discovery of a new molecule, the fi ...

Team explores STXBP5 gene and its role in blood clotting

20 hours ago

Two independent groups of researchers led by Sidney (Wally) Whiteheart, PhD, of the University of Kentucky, and Charles Lowenstein, MD, of the University of Rochester, have published important studies exploring the role that ...

User comments : 0