Ultrasensitive biosensor can detect proteins, aid in cancer diagnosis

Sep 20, 2010

Researchers at Boston College discovered that a cluster of carbon nanotubes coated with a thin layer of protein-recognizing polymer forms a biosensor capable of using electrochemical signals to detect minute amounts of proteins. This new biosensor could provide a crucial new diagnostic tool for the detection of cancer and other illnesses.

The nanotube , described by Thomas Chiles and his colleagues in a paper published in the journal Nature Nanotechnology, proved capable of detecting human ferritin, the primary iron-storing protein of cells, and E7 oncoprotein derived from human papillomavirus. Further tests using calmodulin showed the sensor could discriminate between varieties of the protein that take different shapes, according to the multi-disciplinary team of biologists, chemists, and physicists that developed the sensor.

Molecular imprinting techniques have shown that polymer structures can be used in the development of sensors capable of recognizing certain , but recognizing proteins has presented a difficult set of challenges. Dr. Chiles' team used arrays of wire-like nanotubes coated with a non-conducting polymer coating capable of recognizing proteins with subpicogram per liter sensitivity.

Central to the function of the sensor are imprints of the protein molecules within the non-conducting polymer coating. Because the imprints reduce the thickness of the coating, these regions of the polymer register a lower level of impedance than the rest of the insulator when contacted by the charges inherent to the proteins and an ionized saline solution. When a drops into its mirror image, it fills the void in the insulator, allowing the to register a corresponding change in impedance, signaling the presence of the protein.

Binding can be read in real time, instead of after days or weeks of laboratory analysis, meaning the nanotube molecular imprinting technique could pave the way for biosensors capable of detecting or other viruses weeks sooner than available diagnostic techniques currently allow. As opposed to searching for the HPV antibody or cell-mediated immune responses after initial infection, the nanotube sensor can track the HPV protein directly. In addition, no chemical marker is required by the label-free electrochemical detection methods.

This work is detailed in a paper titled, "A molecular-imprint nanosensor for ultrasensitive detection of proteins." An abstract of this paper is available at the journal's Web site.

Explore further: Nano-scale gold particles are good candidates for drug delivery

Related Stories

Nanotube Coating Meshes with Living Cells

Aug 14, 2006

Using a polymer coating that mimics part of a cell’s outer membrane, a team of investigators at the University of California, Berkeley, have developed a versatile method for targeting carbon nanotubes to specific types ...

Polymer Nanotubes as Molecular Probes and DNA Carriers

May 01, 2006

By growing polymers on a porous aluminum oxide template, researchers at the Seoul National University in Korea have fabricated polymer nanotubes to which they can attach two different types of molecules. These new nanoscale ...

Nano-tetherball biosensor precisely detects glucose

Jan 22, 2009

(PhysOrg.com) -- Researchers have created a precise biosensor for detecting blood glucose and potentially many other biological molecules by using hollow structures called single-wall carbon nanotubes anchored ...

Nanotubes Sniff Out Cancer Agents in Living Cells

Jan 16, 2009

(PhysOrg.com) -- A multidisciplinary team at the Massachusetts Institute of Technology (MIT) has developed carbon nanotubes that can be used as sensors for cancer drugs and other DNA-damaging agents inside living cells. The ...

Recommended for you

Graphene surfaces on photonic racetracks

13 hours ago

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

14 hours ago

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

15 hours ago

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0