Mechanism behind demethylation pinpointed in APC gene mutants

Sep 17, 2010

Researchers at Huntsman Cancer Institute at the University of Utah demonstrate in a study featured in Cell the mechanism by which mutation of the APC gene affects a cellular process known as DNA methylation.

Colon cancer is the second most common cancer in the United States and causes more than 50,000 deaths each year. It has been known for some time that in the APC gene occur in more than 85 percent of all sporadic colon cancers. Now researchers at Huntsman Cancer Institute at the University of Utah demonstrate in a study featured today in Cell the mechanism by which mutation of the APC gene affects a cellular process known as DNA methylation. DNA methylation is a chemical modification made to DNA that plays an important role in dictating how DNA is read and interpreted by a cell.

The group, led by David Jones, Ph.D., and Bradley Cairns, Ph.D., have now linked loss of Apc with DNA demethylase, an enzyme system that erases DNA methylation. Studies using human tissues and zebarafish demonstrate that this system is highly active in tissues harboring mutated Apc and may provide an explanation for the previously known loss of seen in early stage tumors. The activity of the DNA demethylase appears to stall the normal development of , leaving them in a stem cell-like state. Normal development was restored upon of the DNA demethylase system. The experiments conducted by the group also demonstrated that the mechanistic connection between APC mutation and demethylation is conveyed through changes in the amount of retinoic acid (RA), an important regulatory compound derived from dietary vitamin A.

"We believe that clarification of the mechanism leading to demethylation will have broad implications for a variety of cancers. Our increased understanding of the mechanics connecting APC mutation and demethylation presents new opportunities for intervention and may lead the way to developing a truly finely tuned approach to treatment," said Jones. Cairns added, "Since the mechanism of action of the demethylase can inherently create new mutations, misregulation of the system could underlie the occurrence of mutations in additional oncogenes. Its inhibition may therefore allow us to both prevent and treat certain cancers."

Explore further: Effect of intervention, removal of costs, on prenatal genetic testing

add to favorites email to friend print save as pdf

Related Stories

A new way to treat colon cancer?

Oct 10, 2006

Researchers at University of Utah's Huntsman Cancer Institute have discovered a new target for possible future colon cancer treatments – a molecule that is implicated in 85 percent of colon cancer cases.

Newly found enzymes may play early role in cancer

Dec 24, 2008

Researchers have discovered two enzymes that, when combined, could be involved in the earliest stages of cancer. Manipulating these enzymes genetically might lead to targeted therapies aimed at slowing or preventing the onset ...

A surprise 'spark' for pre-cancerous colon polyps

May 14, 2009

Researchers at Huntsman Cancer Institute (HCI) at the University of Utah studied the events leading to colon cancer and found that an unexpected protein serves as the "spark" that triggers formation of colon polyps, the precursors ...

A new cellular pathway linked to cancer is identified

Jul 24, 2008

In the life of a cell, the response to DNA damage determines whether the cell is fated to pause and repair itself, commit suicide, or grow uncontrollably, a route leading to cancer. In a new study, published in the July 25th ...

Recommended for you

Study explores drug users' opinions on genetic testing

5 hours ago

Genomic medicine is rapidly developing, bringing with its advances promises of individualized genetic information to tailor and optimize prevention and treatment interventions. Genetic tests are already guiding treatments ...

Study reveals gene expression patterns in pancreatic CTCs

Sep 22, 2014

Analysis of circulating tumor cells (CTCs) in a mouse model of pancreatic cancer identified distinct patterns of gene expression in several groups of CTCs, including significant differences from the primary tumor that may ...

User comments : 0