Researchers identify new neurological deficit behind lazy eye

Sep 10, 2010

Researchers at New York University's Center for Neural Science have identified a new neurological deficit behind amblyopia, or "lazy eye." Their findings, which appear in the most recent issue of the Journal of Neuroscience, shed additional light on how amblyopia results from disrupted links between the brain and normal visual processing.

Amblyopia results from developmental problems in the brain. When the parts of the brain concerned with visual processing do not function properly, problems ensue with such visual functions as the perception of movement, depth, and fine detail. It is most prevalent neurological defect of vision in children and adults, affecting 1-3 percent of the population.

Previous research on amblyopia has largely focused on one aspect of visual processing—that in the primary visual cortex, or V1.

However, while abnormalities in V1 explain some amblyopic visual problems, they fail to account for the full range of losses suffered by those with amblyopia—including motion perception. With this in mind, the NYU researchers studied a brain area called MT, which has a well-established role in processing information about moving visual objects.

To do this, the researchers studied the visual processing of macaque monkeys, examining those who had normal vision and those whose vision was impaired by amblyopia. The researchers recorded both the monkeys' ability to detect motion and how MT's neurons functioned in this process.

Their results showed striking changes in in MT. In monkeys with normal vision, the MT neurons responded through both eyes. However, in those with amblyopia, the MT neurons showed stronger response in one eye—usually the one not affected by the disorder. Normal visual motion perception relies on neurons that integrate information about the position of moving objects as they cross the visual image. The NYU researchers found that this ability to integrate motion information was defective in neurons driven through the affected eye, which might explain the animal's deficits in motion perception.

"This study shows that results from changes in the brain that extend beyond the ," said J. Anthony Movshon, director of the Center for Neural Science and the paper's senior author, adding that many other affected neurological regions remain undiscovered.

Explore further: New ALS associated gene identified using innovative strategy

Related Stories

Video games shown to improve vision

Mar 15, 2007

According to a new study from the University of Rochester, playing action video games sharpens vision. In tests of visual acuity that assess the ability to see objects accurately in a cluttered space, game players scored ...

Study: Color plays role in perception

Apr 19, 2006

U.S. scientists have discovered a neural circuit they say is likely to play an important role in the visual perception of moving objects.

Recommended for you

New ALS associated gene identified using innovative strategy

12 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

12 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

12 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

16 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

16 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ironjustice
not rated yet Sep 11, 2010
Amblyopia has been treated successfully with vitamin E supplementation for some reason.