For rapid non-linear information processing in the brain, small synaptic impulses are key

Sep 10, 2010
Figure 1: The dynamics of raindrops falling onto a shishi odoshi (deer scarer), a device used in Japanese gardens to scare away birds, provides an excellent model for understanding the operating principles of a nerve cell. (Artwork by Susanne Kunkel) A) The raindrops correspond to the incoming synaptic impulses, each of which increases the water level by a tiny amount. A single additional drop of water ultimately causes the shishi odoshi to tilt and drain. When the shishi odoshi swings back and hits the stone it produces a knocking sound. This corresponds to the emission of an action potential by the neuron. Thus, a single synaptic impulse can strongly affect the state of the neuron. The novel theory of the researchers takes this into account, while previous theories neglected this fact. B) The effect of a single drop on the tilting (response) of the shishi odoshi depends on the size of the drop. The probability that a response occurs is quadratically proportional to the size of the drop, meaning that a doubling of the drop size, for example, would make tilting four times more likely. This “non-linearity” is the basis for multiplications performed by neurons. Copyright : RIKEN

A novel theoretical framework for mathematically modeling nerve cells has illuminated for the first time how small synaptic impulses enable non-linear information processing in the brain. Reported in PLoS Computational Biology, the findings offer fundamental insights relevant to a wide range of biological, physical and technical systems.

In the field of neuroscience, are known to communicate via so-called “action potentials”, brief impulses which cause a cell’s membrane potential to rise and fall. Only when many such impulses together exceed a threshold value does the neuron “fire”, releasing its action potential to target neurons. How neurons transfer action potentials from inputs into outputs determines which elementary operations they are able to perform, and at what rate.

With their latest work, researchers at the RIKEN Brain Science Institute and Bernstein Center for set out to resolve contradictory findings uncovered earlier regarding this input-output relationship. At issue was the conventional theory of spiking , which approximates impulses in the limit where they become vanishingly tiny and infinitely numerous, limiting the capabilities of individual neurons to simple addition of inputs.

Using a newly-developed high-precision method for simulating nonlinear neuron models (see references), the team had previously uncovered contradictions in this theory. To unravel this mystery, the researchers developed a new analytic framework which explicitly incorporates the finite effect of each input at the critical boundary near the firing threshold. With this change, they show that not only can neurons process information far faster than previously believed, they can also perform nonlinear operations such as multiplication that are key to complex information processing.

While more accurately capturing the network aspect of neural dynamics, the new framework also reveals how cooperation between seemingly uncoordinated input signals enables neurons to perform many non-linear operations at the same time. Future work will build on these findings toward a better understanding of brain function, a fundamental requirement for treating neural diseases.

Explore further: Oregon food label measure headed for recount

More information: Moritz Helias, Moritz Deger, Stefan Rotter and Markus Diesmann. Instantaneous non-linear processing by pulse-coupled threshold units. PLoS Computational Biology (2010).

Hanuschkin A, Kunkel S, Helias M, Morrison A and Diesmann M (2010). A general and efficient method for incorporating precise spike times in globally time-driven simulations. Front. Neuroinform. 4:113. doi:10.3389/fninf.2010.00113

he simulation software is freely available from the NEST Initiative: www.nest-initiative.org

add to favorites email to friend print save as pdf

Related Stories

Study: Marijuana may affect neuron firing

Nov 29, 2006

U.S. scientists have discovered the active ingredient in marijuana interferes with synchronized activity between neurons in the hippocampus of rats.

Uncorrelated activity in the brain

Jan 28, 2010

Interconnected networks of neurons process information and give rise to perception by communicating with one another via small electrical impulses known as action potentials. In the past, scientists believed that adjacent ...

Neurons use chemical 'chords' to shape signaling

Feb 27, 2008

Researchers have discovered that neurons can use two different neurotransmitters that target the same receptor on a receiving neuron to shape the transmission of a nerve impulse. Although the researchers’ experiments identified ...

New brain cells listen before they talk

Oct 30, 2007

Newly created neurons in adults rely on signals from distant brain regions to regulate their maturation and survival before they can communicate with existing neighboring cells—a finding that has important implications ...

Mechanism of nicotine's learning effects explored

Apr 04, 2007

While nicotine is highly addictive, researchers have also shown the drug to enhance learning and memory—a property that has launched efforts to develop nicotine-like drugs to treat cognitive deficits in Alzheimer’s and ...

Recommended for you

Parasitic worm genomes: largest-ever dataset released

11 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Male sex organ distinguishes 30 millipede species

11 hours ago

The unique shapes of male sex organs have helped describe thirty new millipede species from the Great Western Woodlands in the Goldfields, the largest area of relatively undisturbed Mediterranean climate ...

How can we avoid kelp beds turning into barren grounds?

15 hours ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.