Plant nutrients from wastewater

Sep 07, 2010

Nitrogen, phosphorous and potassium -- there are valuable nutrients contained in wastewater. Unfortunately, these essential nutrients are lost in conventional wastewater treatment plants. This is the reason why researchers at Fraunhofer have been working on processes for regaining these nutrients in the form that can be used for agriculture. They are showcasing their work at Fraunhofer's stand at the IFAT ENTSORGA fair (Sept. 13-17 in Munich, Germany).

Plants cannot thrive without such as nitrogen, phosphorous or potassium, therefore farmers usually use organic and industrially manufactured mineral fertilizers to supply wheat, maize and others with these vital substances. In future, the need for nutrients will be soaring because we will only be able to supply the world's growing population with food and cover surging demands for biofuels by using fertilizers.

Logically, that causes the prices for these nutrients to skyrocket. But that is not the only problem. The deposits of rock required for manufacturing phosphate fertilizers are becoming increasingly scarce. The researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart, Germany are working at alternatives. They want to recover these essential nutrients from wastewater.

Dr.- Ing. Maria Soledad Stoll points out that "These nutrients are hardly recovered these days." For instance, conventional municipal waste treatment plants use aluminum or ferrous salts to remove the valuable phosphate. Ms. Stoll goes on to say, "However, aluminum and iron phosphate salts can be toxic for plants even in slight concentrations, which is why they cannot be used as fertilizers." The researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology are devising alternative methods for recovering the nutrients from the wastewater to use them for agriculture.

"We are working at new methods to recover magnesium-ammonium-phosphate and organic phosphorous from wastewater. The nutrients will then be directly marketed as a fully adequate product and used in agriculture again depending upon the properties of the soils and cultivated ," says Ms. Stoll.

Explore further: Managing land into the future

add to favorites email to friend print save as pdf

Related Stories

New insights into costly destruction of subsurface petroleum

Sep 25, 2006

Scientists are reporting an advance toward understanding and possibly combating a natural process that destroys billions of dollars worth of subsurface petroleum. Called biodegradation, it occurs as bacteria and other microbes ...

Energy efficient sewage plants

Aug 13, 2009

High-rate digestion with microfiltration is state-of-the-art in large sewage plants. It effectively removes accumulated sludge and produces biogas to generate energy. A study now reveals that even small plants can benefit ...

What's in our water?

Nov 05, 2009

(PhysOrg.com) -- Although America's supply of drinking water is considered among the world's safest, there is an urgent need to develop more stringent regulations to guide how water is monitored for pollutants, ...

Hairy secret of foraging plants discovered

Feb 18, 2010

(PhysOrg.com) -- The genes that control the hairy 'mining machine' that makes some plants better at finding nutrients in poor soils than others have been discovered by scientists from Oxford University and ...

Vermicompost from pig manure grows healthy hibiscus

Dec 10, 2009

Vermicomposting, the practice of using earthworms to turn waste into nutrient-rich fertilizer, can be an economical, organic waste management practice. During vermicomposting, earthworms and microorganisms stabilize organic ...

Recommended for you

Big changes in the Sargasso Sea

12 hours ago

Over one thousand miles wide and three thousand miles long, the Sargasso Sea occupies almost two thirds of the North Atlantic Ocean. Within the sea, circling ocean currents accumulate mats of Sargassum seawee ...

Water-quality trading can reduce river pollution

12 hours ago

Allowing polluters to buy, sell or trade water-quality credits could significantly reduce pollution in river basins and estuaries faster and at lower cost than requiring the facilities to meet compliance costs on their own, ...

Managing land into the future

16 hours ago

Food production is the backbone of New Zealand's economy—and a computer modelling programme designed by a Victoria University of Wellington academic is helping ensure that farming practices here and overseas ...

User comments : 0