Researchers identify how bone-marrow stem cells hold their 'breath' in low-oxygen environments

Sep 03, 2010

UT Southwestern Medical Center researchers have identified unique metabolic properties that allow a specific type of stem cell in the body to survive and replicate in low-oxygen environments.

In a study published in the September issue of the journal Cell Stem Cell, investigators found that the low-oxygen microenvironments that ordinarily deprive and starve other kinds of cells are tolerated by a type of stem cell used as the primary material for bone-marrow transplantation.

These cells, called hematopoietic stem cells, are found in marrow and can replicate quickly. Once transplanted, they eventually develop into blood and other types of cells. Their ability to self-renew before they transform into blood forms the basis of their usefulness for bone-marrow transplants.

"The cells convert , or sugars, into energy rather than using oxygen to release energy," said Dr. Hesham Sadek, assistant professor of internal medicine at UT Southwestern and senior author of the study "They use glycolysis instead of mitochondrial to meet their energy demands."

Dr. Sadek and his team sought to understand how hematopoietic cells regulate their in spite of their inhospitable environment and found the cells expressed a certain gene in a way that enabled them to function without using oxygen.

Understanding more about the function of stem cells and their ability to self renew might lead to new avenues of encouraging the cells to grow in large numbers outside the body, Dr. Sadek said. For example, a potential bone-marrow donor's cells could be incubated and grown indefinitely, providing stem cells to be used in multiple transplant therapies.

"There have been few studies of the metabolism of stem cells, and our aim was to find out how stem cells can 'breathe' and replicate without an oxygen-rich environment crucial for other kinds of cells," Dr. Sadek said.

In addition to being successfully used for bone-marrow transplantation for years, bone-marrow cells are used in hundreds of studies for heart regeneration, he said.

"The findings of this paper highlight important characteristics of bone-marrow that make them more likely to survive in the low-oxygen environments present, for example, after a heart attack," Dr. Sadek said. "These findings may also be exploited to enrich bone-marrow stem and progenitor cells by selecting cells based on their metabolic properties."

Explore further: Education, breastfeeding and gender affect the microbes on our bodies

add to favorites email to friend print save as pdf

Related Stories

Molecule dictates how stem cells travel

Jan 14, 2006

U.S. researchers have defined a molecule that dictates how blood stem cells travel to the bone marrow and establish blood and immune cell production.

Stem cell breakthrough: Bone marrow cells are the answer

Jan 28, 2010

Using cells from mice, scientists from Iowa and Iran have discovered a new strategy for making embryonic stem cell transplants less likely to be rejected by a recipient's immune system. This strategy, described in a new research ...

Protein key to control, growth of blood cells

Aug 13, 2008

New research sheds light on the biological events by which stem cells in the bone marrow develop into the broad variety of cells that circulate in the blood. The findings may help improve the success of bone marrow transplants ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

3 hours ago

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

14 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

15 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

User comments : 0

More news stories

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.