New method successfully predicted how oil from Deepwater Horizon spill would spread

Sep 02, 2010

Prompted by the Deepwater Horizon oil spill, a UC Santa Barbara scientist has come up with a new way of predicting how contaminants like oil will spread. He was able to forecast several days in advance that oil from that spill would wash ashore in particular parts of the Gulf of Mexico.

"We predicted where the was going to go," says Igor Mezic, a professor of mechanical engineering at UC Santa Barbara who studies . "We were able to do 3-day predictions pretty accurately."

In a paper published online Sept. 2 in , Mezic, together with Sophie Loire, a postdoctoral fellow who works with Mezic, and colleagues at the software development company Aimdyn, Inc. in Santa Barbara and at NASA's Stennis Space Center in Mississippi, describe how they predicted the movement of oil spilled into the after an explosion aboard the Deepwater Horizon rig on April 20.

In the following weeks, Mezic and his colleagues generated frequent forecasts of the movement of the spill and passed them on to those involved in the cleanup.

"We were on the phone with people, several days in advance, telling them where the oil was going to go," says Mezic, who began the work after watching coverage of the oil spill. "I looked at this problem on the TV and thought I could do something about it," he says. "I felt there could be a better set of theories to predict how oil will move."

Mezic and his colleagues successfully predicted where and when oil washed ashore in the Delta and later, on the white-sand beaches of Pensacola, Florida, and they forecast that the spill would then move east toward Panama City Beach. Their predictions were accurate to within a couple of miles of the actual extent of the spill later assessed by NOAA from aerial surveys.

It's not easy to predict how an will spread across the ocean, Mezic says, because of the large scale involved, and the constantly changing movement of water at the , driven largely by wind.

Mezic's new approach to the problem is based on computations that describe how slicks of oil tend to be stretched into filaments by motion at the sea surface. To produce predictions of oil movement after the Deepwater Horizon accident, the researchers incorporated forecasts of sea surface conditions from a U.S. Navy model.

Mezic says further refinements of this new methodology could be done in order to predict the spread of many other contaminants such as ash spewed out of an erupting volcano or warm air seeping into a climate-controlled building.

"It's pretty universal," Mezic says. "It could be applied to many different kinds of situations where a contaminant or heat is moved around by a liquid or gas."

Explore further: Researchers provide guide to household water conservation

Related Stories

Image: Oil Slick Spreads off Gulf Coast

Apr 27, 2010

NASA's Aqua satellite captured this image of the Gulf of Mexico on April 25, 2010 using its Moderate Resolution Imaging Spectroradiometer (MODIS) instrument.

NASA Captures Night Infrared View of Gulf Oil Spill

May 10, 2010

(PhysOrg.com) -- A May 7 nighttime infrared image of the Gulf oil spill from an instrument on NASA's Terra spacecraft provides a different perspective on the oil slick nearing the Gulf coast.

Deep plumes of oil could cause dead zones in the Gulf

Aug 19, 2010

A new simulation of oil and methane leaked into the Gulf of Mexico suggests that deep hypoxic zones or "dead zones" could form near the source of the pollution. The research investigates five scenarios of oil and methane ...

Recommended for you

Studying wetlands as a producer of greenhouse gases

4 hours ago

(Phys.org) —Wetlands are well known for their beneficial role in the environment. But UConn Honors student Emily McInerney '15 (CAHNR) is studying a less widely known role of wetlands – as a major producer ...

User comments : 0