Microrobots: Miniature auto differential helps tiny aerial robots stay aloft

Sep 02, 2010
Engineers at Harvard University are developing minuscule aerial robots that could someday be used to probe environmental hazards, forest fires, and other places too perilous for people. Credit: Pratheev S. Sreetharan/Harvard University

Engineers at Harvard University have created a millionth-scale automobile differential to govern the flight of minuscule aerial robots that could someday be used to probe environmental hazards, forest fires, and other places too perilous for people.

Their new approach is the first to passively balance the encountered by these miniature flying devices, letting their wings flap asymmetrically in response to gusts of wind, wing damage, and other real-world impediments.

"The drivetrain for an aerial microrobot shares many characteristics with a two-wheel-drive automobile," says lead author Pratheev S. Sreetharan, a graduate student in Harvard's School of Engineering and Applied Sciences. "Both deliver power from a single source to a pair of wheels or wings. But our PARITy differential generates torques up to 10 million times smaller than in a car, is 5 millimeters long, and weighs about one-hundredth of a gram -- a millionth the mass of an automobile differential."

High-performance aerial microrobots, such as those the Harvard scientists describe in the Journal of Mechanical Design, could ultimately be used to investigate areas deemed too dangerous for people. Scientists at institutions including the University of California, Berkeley, University of Delaware, University of Tokyo, and Delft University of Technology in the Netherlands are exploring aerial microrobots as cheap, disposable tools that might someday be deployed in search and rescue operations, agriculture, , and exploration of hazardous environments.

Engineers at Harvard University are developing minuscule aerial robots that could someday be used to probe environmental hazards, forest fires, and other places too perilous for people. Credit: Pratheev S. Sreetharan/Harvard University

To fly successfully through unpredictable environments, aerial microrobots -- like insects, nature's nimblest fliers -- have to negotiate conditions that change second-by-second. Insects usually accomplish this by flapping their wings in unison, a process whose kinematic and aerodynamic basis remains poorly understood.

Sreetharan and his co-author, Harvard engineering professor Robert J. Wood, recognized that an aerial microrobot based on an insect need not contain complex electronic feedback loops to precisely control wing position.

"We're not interested so much in the position of the wings as the torque they generate," says Wood, an associate professor of electrical engineering at Harvard. "Our design uses 'mechanical intelligence' to determine the correct wing speed and amplitude to balance the other forces affecting the robot. It can slow down or speed up automatically to correct imbalances."

Sreetharan and Wood found that even when a significant part of an aerial microrobot's wing was removed, the self-correction engendered by their PARITy (Passive Aeromechanical Regulation of Imbalanced Torques) drivetrain allowed the device to remain balanced in flight. Smaller wings simply flapped harder to keep up with the torque generated by an intact wing, reaching speeds of up to 6,600 beats per minute.

Engineers at Harvard University are developing minuscule aerial robots that could someday be used to probe environmental hazards, forest fires, and other places too perilous for people. Credit: Pratheev S. Sreetharan/Harvard University

The Harvard engineers say their passive approach to regulating the forces generated in flight is preferable to a more active approach involving electronic sensors and computation, which would add weight and complexity to devices intended to remain as small as lightweight as possible. Current-generation aerial microrobots are about the size and weight of many insects, and even make a similar buzzing sound when flying.

"We suspect that similar passive mechanisms exist in nature, in actual insects," Sreetharan says. "We take our inspiration from biology, and from the elegant simplicity that has evolved in so many natural systems."

Explore further: Creative adaptation of a quadcopter

Related Stories

Micro flying robots can fly more effectively than flies

Aug 01, 2009

There is a long held belief among engineers and biologists that micro flying robots that fly like airplanes and helicopters consume much more energy than micro robots that fly like flies. A new study now shows ...

Flies Don't Think Much Of Turning (w/ Video)

Apr 02, 2010

The next time a fly dodges your swatter, take a moment to appreciate how maneuverable these little pests are. Fruit flies can make a complete U-turn in one-tenth of the time it takes you to blink.

Artificial butterfly in flight and filmed (w/ Video)

May 20, 2010

A group of Japanese researchers, who publish their findings today in Bioinspiration & Biomimetics, have succeeded in building a fully functional replica model - an ornithopter - of a swallowtail butterfly, and they have f ...

Secrets of insect flight revealed

Sep 17, 2009

(PhysOrg.com) -- Researchers are one step closer to creating a micro-aircraft that flies with the manoeuvrability and energy efficiency of an insect after decoding the aerodynamic secrets of insect flight.

Recommended for you

Tesla says decision on battery factory months away

15 hours ago

(AP)ā€”Electric car maker Tesla Motors said Thursday that it is preparing a site near Reno, Nevada, as a possible location for its new battery factory, but is still evaluating other sites.

Comfortable climate indoors with porous glass

Jul 31, 2014

Proper humidity and temperature play a key role in indoor climate. In the future, establishing a comfortable indoor environment may rely on porous glass incorporated into plaster, as this regulates moisture ...

Crash-testing rivets

Jul 31, 2014

Rivets have to reliably hold the chassis of an automobile together ā€“ even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced ...

Customized surface inspection

Jul 31, 2014

The quality control of component surfaces is a complex undertaking. Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into ...

User comments : 6

Adjust slider to filter visible comments by rank

Display comments: newest first

Musashi
not rated yet Sep 02, 2010
"Probe environmental hazards, forest fires, and other places too perilous for people..."

Right... call me cynic...
axemaster
not rated yet Sep 02, 2010
Far more likely that they will be used to spy on people without their knowledge.
JamesThomas
not rated yet Sep 02, 2010
I agree. Much of this type of technology is either blatantly or secretly being financed by the military.

Whenever you see robots being made primarily for "search and rescue", the truth is closer to "search and destroy". Not to say that these new fantastic devises could not be used for humanitarian and environmental purposes, it's just that these uses fall at the bottom of the list - except for media propaganda (such as here) where they rise to the top.
Eric_B
not rated yet Sep 02, 2010
I cloud of these would make a terrifying and nearly unstoppable weapon.

I'd start writing the scifi movie script right now if the movie industry wasn't so messed up.
RTT
not rated yet Sep 02, 2010
I cloud of these would make a terrifying and nearly unstoppable weapon.

I'd start writing the scifi movie script right now if the movie industry wasn't so messed up.


I think that movie was made already - the newer release of The Day The Earth Stood Still.
Nik_2213
not rated yet Sep 05, 2010
Would it survive an electric fly-swat ??