Structural defects precede functional decline in heart muscle

Aug 30, 2010
UI study shows that T-tubule disruption starts to occur even before any decline in heart function is detectable. The study also finds that T-tubule disorganization gradually worsens over the progression of heart disease and correlates with the severity of cardiac hypertrophy and predicts heart function. Understanding how T-tubule disruption occurs may lead to new ways to diagnose or treat heart failure. Credit: University of Iowa

The disruption of a structural component in heart muscle cells, which is associated with heart failure, appears to occur even before heart function starts to decline, according to a new study by researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine.

The structure is a highly organized network of grooves in heart muscle membrane called T-tubules. This network is essential for transmitting electrical signals to the cell's interior where they are translated into contractions that make the heart beat.

It was previously known that T-tubules become very disorganized during . The new study, published in the Aug. 20 issue of the journal Circulation Research, shows that this disorganization starts well before heart failure occurs during a stage known as compensated hypertrophy, when the heart muscle is enlarged but still able to pump a normal amount of blood around the body.

"Although heart function appears normal during compensated , we found that there already is structural damage," said Long-Sheng Song, M.D., senior author of this paper and UI assistant professor of internal medicine. "Our study suggests that things are going wrong very early in the process, and if we could prevent or slow this damage, we might be able to delay the onset of heart failure."

The researchers used a state-of-the-art imaging technique called laser scanning confocal microscope to visualize these structural changes in an of heart failure. The study compared T-tubule structure and at different stages of and found that the more disorganized the T-tubule network becomes, the worse the heart functions.

Moreover, the researchers found that T-tubule disorganization was also accompanied by a reduction in levels of a molecule called junctophilin-2, which is thought to be involved in formation of T-tubule networks. In cell experiments, loss of this molecule led to reduced T-tubule integrity.

Although the new findings are not ready to be applied in a clinical setting, understanding how T-tubule disruption occurs may lead to new ways to diagnose or treat heart failure.

Explore further: Not just for the holidays, mistletoe could fight obesity-related liver disease

Related Stories

Protein identified that helps heart muscle contract

Feb 16, 2010

UCSF researchers have discovered that a protein called B1N1 is necessary for the heart to contract. The findings, published in the Feb. 16 issue of the open access journal PLoS Biology, shed light not only on what makes ...

New heart failure device is tested

Oct 17, 2006

Physicians at 50 U.S. medical facilities are taking part in a multinational clinical trial of a device designed to help heart failure victims.

Impaired activity of the protein MTOR a strain on the heart

Jul 19, 2010

A team of researchers, led by Gianluigi Condorelli, at the University of California San Diego, La Jolla, has generated data in mice that suggest that drugs that inhibit the protein MTOR, which are used to treat several forms ...

Recommended for you

Stem cells faulty in Duchenne muscular dystrophy

56 minutes ago

Like human patients, mice with a form of Duchenne muscular dystrophy undergo progressive muscle degeneration and accumulate connective tissue as they age. Now, researchers at the Stanford University School of Medicine have ...

Here's how the prion protein protects us

5 hours ago

The cellular prion protein (PrPC) has the ability to protect the brain's neurons. Although scientists have known about this protective physiological function for some time, they were lacking detailed knowledge ...

Regulation of maternal miRNAs in early embryos revealed

6 hours ago

The Center for RNA Research at the Institute for Basic Science (IBS) has succeeded in revealing, for the first time, the mechanism of how miRNAs, which control gene expression, are regulated in the early embryonic stage.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.