Research heralds potential for early diagnosis of degenerative brain disorders

Aug 25, 2010

A team of American scientists claim that a new method of testing for neurological diseases could provide doctors with a rapid and non-invasively method of diagnosing degenerative disorders. The research, published in The journal of Comparative Neurology, reveals that Magnetic Resonance Spectroscopy (MRS) can distinguish between different disorders in patients, allowing earlier diagnosis.

The diagnosis of neurological degenerative disorders such as Huntington's disease remains a difficult clinical task and while tests such as (MRI) can reveal loss of , until now no diagnostic testing methods could help distinguish between Alzheimer's disease, Huntington's disease, or Parkinson's disease reliably.

"We discovered that MRS can reliably identify brain pathology in model mice by measuring 17 different brain metabolites at the same time," said project leader Dr. Jason B. Nikas from the University of Minnesota. "This technology, if expanded to humans and applied to a range of neurological disorders, could potentially provide diagnostic information to distinguish different causes of dementia and other forms of neurological illness, rapidly and non-invasively, with current generation MR scanners."

MRI and MRS both work by applying a magnetic field to a biological tissue, and then perturbing it with a radio-frequency (RF) signal, certain types of atoms in the tissue will give a response that can be detected externally.

MRI is based upon the response of hydrogen atoms in water molecules in the tissue, however MRS can quantify the amounts of complex biological molecules in tissue.

Nikas and colleagues measured the amounts of 17 different biochemical substances in the brains of mice and found that the Huntington mutation 'R6/2' caused a signature change in the levels of these substances. This allowed the team to successfully identify which mice had the mutation, 100% of the time, by non-invasive MRS.

This method has enormous implications both for neuroscience and for clinical neurology. For patients with clinical syndromes that are difficult to diagnose, such as the cause of a dementing illness, MRS might be able to identify signature "MR fingerprints" of specific diseases, leading to rapid, non-invasive diagnosis.

"Scanning animals non-invasively by MRS could be useful in the monitoring of various interventions in mice with genetic disorders," concluded Nikas. "However, it could be even more valuable for identifying human subjects who were asymptomatic, but showed the MRS signature of a particular disease, which they might develop years later; moreover, it could be very valuable in assessing disease progression and/or the efficacy of an applied medical treatment."

Explore further: Advances made in improving error awareness in older people

More information: onlinelibrary.wiley.com/doi/10.1002/cne.22365/abstract

add to favorites email to friend print save as pdf

Related Stories

Imaging neural progenitor cells in the living human brain

Nov 08, 2007

For the first time, investigators have identified a way to detect neural progenitor cells (NPCs), which can develop into neurons and other nervous system cells, in the living human brain using a type of imaging called magnetic ...

Recommended for you

Advances made in improving error awareness in older people

23 hours ago

(Medical Xpress)—Neuroscientists at Trinity College Dublin have found that people in their 70s are on average less aware of mistakes they make than younger people. The findings may help us develop better methods for helping ...

User comments : 0

More news stories

What are the chances that your dad isn't your dad?

How confident are you that the man you call dad is really your biological father? If you believe some of the most commonly-quoted figures, you could be forgiven for not being very confident at all. But how ...

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Gene removal could have implications beyond plant science

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...