Researchers use nanobiotechnology-manipulated light particles to accelerate algae growth

Aug 24, 2010

Scientists and engineers seek to meet three goals in the production of biofuels from non-edible sources such as microalgae: efficiency, economical production and ecological sustainability. Syracuse University's Radhakrishna Sureshkumar, professor and chair of biomedical and chemical engineering in the L.C. Smith College of Engineering and Computer Science, and SU chemical engineering Ph.D. student Satvik Wani have uncovered a process that is a promising step toward accomplishing these three goals.

Sureshkumar and Wani have discovered a method to make , which can be used in the production of biofuels, grow faster by manipulating through the use of . By creating accelerated photosynthesis, algae will grow faster with minimal change in the ecological resources required. This method is highlighted in the August 2010 issue of Nature Magazine.

The SU team has developed a new bioreactor that can enhance algae growth. They accomplished this by utilizing nanoparticles that selectively scatter blue light, promoting algae metabolism. When the optimal combination of light and confined nanoparticle suspension configuration was used, the team was able to achieve growth enhancement of an algae sample of greater than 30 percent as compared to a control.

"Algae produce triglycerides, which consist of fatty acids and glycerin. The can be turned into biodiesel while the glycerin is a valuable byproduct," says Sureshkumar. "Molecular biologists are actively seeking ways to engineer optimal algae strains for biofuel production. Enhancing the phototropic growth rate of such optimal organisms translates to increased productivity in harvesting the feedstock."

The process involved the creation of a miniature bioreactor that consisted of a of a strain of (Chlamydomonas reinhardtii) on top of another dish containing a suspension of silver nanoparticles that served to backscatter blue light into the algae culture. Through model-guided experimentation, the team discovered that by varying the concentration and size of the nanoparticle solution they could manipulate the intensity and frequency of the light source, thereby achieving an optimal wavelength for algal growth.

"Implementation of easily tunable wavelength specific backscattering on larger scales still remains a challenge, but its realization will have a substantial impact on the efficient harvesting of phototrophic microorganisms and reducing parasitic growth," says Sureshkumar. "Devices that can convert light not utilized by the algae into the useful blue spectral regime can also be envisioned."

To date, this is one of the first explorations into utilizing nanobiotechnology to promote microalgal growth. The acceleration in the growth rate of algae also had numerous benefits outside the area of biofuel production. Sureshkumar and Wani will be looking to employ this discovery to further their research in creating environmental sensors for ecological warning systems.

Explore further: New tool identifies therapeutic proteins in a 'snap'

Provided by Syracuse University

not rated yet

Related Stories

Algae-Based Biofuel From Fish

Sep 01, 2009

Right now, when biofuel is produced using algae, cultures are grown and then processed into fuel. But the process is expensive and difficult. Now a company in Texas, LiveFuels, Inc., hopes that it will be ...

Clean algae biofuel project leads world in productivity

Nov 04, 2009

Australian scientists are achieving the world's best production rates of oil from algae grown in open saline ponds, taking them a step closer to creating commercial quantities of clean biofuel for the future.

Green energy from algae

Jun 25, 2010

(PhysOrg.com) -- Visitors to this year’s UK Royal Society Summer Exhibition will have a chance to discover how scientists from the University of Cambridge are studying ways to harness algae as a renewable ...

Recommended for you

New tool identifies therapeutic proteins in a 'snap'

15 hours ago

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Treating pain by blocking the 'chili-pepper receptor'

Aug 20, 2014

Biting into a chili pepper causes a burning spiciness that is irresistible to some, but intolerable to others. Scientists exploring the chili pepper's effect are using their findings to develop a new drug ...

Moving single cells around—accurately and cheaply

Aug 19, 2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette—a common laboratory tool that's been tweaked slightly. They describe this ...

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

User comments : 0