Small Size -- Huge Potential

Aug 24, 2010 By Karen A. Grava
Small fibers or rods of titanium oxide emanating from the manganese oxide-based template. Photo provided by the College of Liberal Arts and Sciences

(PhysOrg.com) -- A University of Connecticut chemistry professor's nanotechnology research will be useful in alternative fuel development.

A cover story in the September issue of Small, a prestigious nanotechnology journal, features a method developed by UConn chemistry professor Steven Suib for the production of a nano-sized that will be used for energy conservation.

The issue, to be published next month, reports on basic science research into a new material that could be used as a in development.

The nanomaterial, developed using Suib’s method, is tiny - smaller by far than even the head of a pin - and consists of two materials, one a template and the other a material that can grow around it in a well-ordered array. The growth can be controlled and uses to drive reactions such as the splitting of water into hydrogen and oxygen.

Hollow rods of titanium oxide with the solid manganese oxide core removed. Photo provided by the College of Liberal Arts and Sciences

The material can be a component of paint or can be applied to a surface, and will be useful in solar applications, says Suib, head of the chemistry department in the College of Liberal Arts and Sciences. The material acts as a catalyst in a process chemists call photocatalysis, which is the acceleration of a photoreaction in the presence of a catalyst.

One of the amazing things about the work is its incredibly small size - 100 nanometers. “It’s very hard to make materials this size,” Suib says, “as small antennas come in and out of a surface that small.”

Explore further: Chemical vapor deposition used to grow atomic layer materials on top of each other

More information: The article was published online in May.

add to favorites email to friend print save as pdf

Related Stories

Measuring Synthesis Intermediates for Better Materials

Nov 01, 2006

Involved in about 90 percent of all chemical processes and the creation of about 60 percent of the chemical products available on the market, catalysis is vital to American industries. Catalysis, the acceleration ...

Recommended for you

Making 'bucky-balls' in spin-out's sights

10 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 0

More news stories

Researchers see hospitalization records as additional tool

Comparing hospitalization records with data reported to local boards of health presents a more accurate way to monitor how well communities track disease outbreaks, according to a paper published April 16 in the journal PLOS ON ...

Ebola virus in Africa outbreak is a new strain

Scientists say that the Ebola (ee-BOH'-lah) virus that has killed scores of people this year in Guinea (GIH'-nee) is a new strain. That means it did not spread there from outbreaks in some other African nations.