Study shows deepwater oil plume in Gulf degraded by microbes

Aug 24, 2010 by Lynn Yarris
Microbes are degrading oil in the deepwater plume from the BP oil spill in the Gulf, a study by Berkeley Lab researchers has shown. Image from Hoi-Ying Holman group

In the aftermath of the explosion of BP's Deepwater Horizon drilling rig in the Gulf of Mexico, a dispersed oil plume was formed at a depth between 3,600 and 4,000 feet and extending some 10 miles out from the wellhead. An intensive study by scientists with the Lawrence Berkeley National Laboratory (Berkeley Lab) found that microbial activity, spearheaded by a new and unclassified species, degrades oil much faster than anticipated. This degradation appears to take place without a significant level of oxygen depletion.

"Our findings show that the influx of oil profoundly altered the microbial community by significantly stimulating deep-sea psychrophilic (cold temperature) gamma-proteobacteria that are closely related to known petroleum-degrading microbes," says Terry Hazen, a microbial ecologist with Berkeley Lab's Earth Sciences Division and principal investigator with the Energy Biosciences Institute, who led this study. "This enrichment of psychrophilic petroleum degraders with their rapid oil biodegradation rates appears to be one of the major mechanisms behind the rapid decline of the deepwater dispersed oil plume that has been observed."

The uncontrolled oil blowout in the Gulf of Mexico from BP's deepwater well was the deepest and one of the largest oil leaks in history. The extreme depths in the water column and the magnitude of this event posed a great many questions. In addition, to prevent large amounts of the highly flammable Gulf light crude from reaching the surface, BP deployed an unprecedented quantity of the commercial oil dispersant COREXIT 9500 at the wellhead, creating a plume of micron-sized petroleum particles. Although the environmental effects of COREXIT have been studied in surface water applications for more than a decade, its potential impact and effectiveness in the deep waters of the Gulf marine ecosystem were unknown.

Analysis by Hazen and his colleagues of microbial genes in the dispersed oil plume revealed a variety of hydrocarbon-degraders, some of which were strongly correlated with the concentration changes of various oil contaminants. Analysis of changes in the oil composition as the plume extended from the wellhead pointed to faster than expected biodegradation rates with the half-life of alkanes ranging from 1.2 to 6.1 days.

"Our findings, which provide the first data ever on microbial activity from a deepwater dispersed oil plume, suggest that a great potential for intrinsic bioremediation of oil plumes exists in the deep-sea," Hazen says. "These findings also show that psychrophilic oil-degrading microbial populations and their associated play a significant role in controlling the ultimate fates and consequences of deep-sea oil plumes in the Gulf of Mexico."

The results of this research are reported in the journal Science (August 26, 2010 on-line) in a paper titled "Deep-sea oil plume enriches Indigenous oil-degrading bacteria."

Hazen and his colleagues began their study on May 25, 2010.

Analysis with Berkeley Lab’s phyloChip revealed the dominant microbe in the dispersed Gulf of Mexico oil plume was a new species, closely related to members of Oceanospirillales family. (Image from Terry Hazen group)

At that time, the deep reaches of the Gulf of Mexico were a relatively unexplored microbial habitat, where temperatures hover around 5 degrees Celsius, the pressure is enormous, and there is normally little carbon present.

"We deployed on two ships to determine the physical, chemical and microbiological properties of the deepwater oil plume," Hazen says. "The oil escaping from the damaged wellhead represented an enormous carbon input to the water column ecosystem and while we suspected that hydrocarbon components in the oil could potentially serve as a carbon substrate for deep-sea microbes, scientific data was needed for informed decisions."

Hazen, who has studied numerous oil-spill sites in the past, is the leader of the Ecology Department and Center for Environmental Biotechnology at Berkeley Lab's Earth Sciences Division. He conducted this research under an existing grant he holds with the Energy Biosciences Institute (EBI) to study microbial enhanced hydrocarbon recovery. EBI is a partnership led by the University of California (UC) Berkeley and including Berkeley Lab and the University of Illinois that is funded by a $500 million, 10-year grant from BP.

Results in the Science paper are based on the analysis of more than 200 samples collected from 17 deepwater sites between May 25 and June 2, 2010. Sample analysis was boosted by the use of the latest edition of the award-winning Berkeley Lab PhyloChip - a unique credit card-sized DNA-based microarray that can be used to quickly, accurately and comprehensively detect the presence of up to 50,000 different species of bacteria and archaea in a single sample from any environmental source, without the need of culturing. Use of the Phylochip enabled Hazen and his colleagues to determine that the dominant microbe in the oil plume is a new species, closely related to members of Oceanospirillales family, particularly Oleispirea antarctica and Oceaniserpentilla haliotis.

Hazen and his colleagues attribute the faster than expected rates of oil biodegradation at the 5 degrees Celsius temperature in part to the nature of Gulf light crude, which contains a large volatile component that is more biodegradable. The use of the COREXIT dispersant may have also accelerated biodegradation because of the small size of the oil particles and the low overall concentrations of oil in the plume. In addition, frequent episodic oil leaks from natural seeps in the Gulf seabed may have led to adaptations over long periods of time by the deep-sea microbial community that speed up hydrocarbon degradation rates.

This video is not supported by your browser at this time.
A public lecture by Terry Hazen entitled “Bioremediation: The Hope and the Hype for Environmental Cleanup”

One of the concerns raised about microbial degradation of the in a deepwater plume is that the microbes would also be consuming large portions of oxygen in the plume, creating so-called "dead-zones" in the water column where life cannot be sustained. In their study, the Berkeley Lab researchers found that oxygen saturation outside the plume was 67-percent while within the plume it was 59-percent.

"The low concentrations of iron in seawater may have prevented oxygen concentrations dropping more precipitously from biodegradation demand on the petroleum, since many hydrocarbon-degrading enzymes have iron as a component," Hazen says. "There's not enough iron to form more of these enzymes, which would degrade the carbon faster but also consume more oxygen."

Explore further: Coral growth rate plummets in 30-year comparison

Related Stories

Expert: Caution required for Gulf oil spill clean-up

May 04, 2010

With millions of gallons crude oil being spewed into the Gulf of Mexico from the Deepwater Horizon oil spill, the focus now is on shutting down the leak. However, in the cleanup efforts to come, "extreme caution" ...

Recommended for you

Coral growth rate plummets in 30-year comparison

9 minutes ago

A team of researchers working on a Carnegie expedition in Australia's Great Barrier Reef has documented that coral growth rates have plummeted 40% since the mid-1970s. The scientists suggest that ocean acidification ...

Environmentalists and industry duke it out over plastic bags

1 hour ago

Campaigns against disposable plastic shopping bags and their environmental impact recently scored a major win. In August, California lawmakers passed the first statewide ban on the bags, and Governor Jerry Brown is expected ...

Global change: Trees continue to grow at a faster rate

2 hours ago

Trees have been growing significantly faster since the 1960s. The typical development phases of trees and stands have barely changed, but they have accelerated—by as much as 70 percent. This was the outcome ...

Cape Cod saltmarsh recovery looks good, falls short

3 hours ago

After decades of decline, grasses have returned to some once-denuded patches of Cape Cod's saltmarshes. To the eye, the marsh in those places seems healthy again, but a new study makes clear that a key service ...

User comments : 15

Adjust slider to filter visible comments by rank

Display comments: newest first

Canman
Aug 24, 2010
This comment has been removed by a moderator.
Caliban
3.7 / 5 (3) Aug 24, 2010
If these results stand as expected, then this is a tiny ray of sunshine in an otherwise gloomy forecast.
No mention of homogeneity of microbial degradation throughout the plume, estimates of percentage of plume degraded, how toxic these bacteria become, themselves, especially after death, nor any information regarding what parts, if any of the oil and corexit left over from metabolic activity of the bacteria remain in the water column as toxic residue.

These are questions that one would expect, and for perfectly obvious reasons, to be addressed in any such research.

Perhaps I'm only being cynical, but this smacks a bit too much of the same mendacity as the gov report that all but 25% of the oil was already "gone".

The fact that the research is funded by BP doesn't help either, though the research may well be -and one hopes is- conducted rigorously, objectively, and without influence.

I would expect some tank studies at pressure and temp, with full input/output analysis.
solrey
2.3 / 5 (6) Aug 24, 2010
Their research would seem to contradict the results of about half a dozen other studies.

What do these two scientists have to say?
http://www.youtub...embedded

Underwater plume the size of Manhattan.
http://blogs.disc...-mexico/

Raising the estimates.
http://www.grist....l-in-th/

When one study reaches opposite conclusions as all the rest, I say follow the money.

"EBI is a partnership led by the University of California (UC) Berkeley and including Berkeley Lab and the University of Illinois that is funded by a $500 million, 10-year grant from BP."

LBNL is a US DOE national lab. Should we trust anything BP or the government has to say about the Gulf at this point? The government has done nothing but cover BP's oily backside to shield them from liability/responsibility.
toyo
5 / 5 (3) Aug 24, 2010
Solrey,
can you point to these "...results of about half a dozen other studies." ?
Just curious....
ArtflDgr
2.3 / 5 (12) Aug 24, 2010
so much for the fragile ecosystem assumption
cmn
5 / 5 (3) Aug 24, 2010
And when these oil loving microbes run out of food (oil) and start dieing off, what then? Will there be any toxic side effects, much like there are when other microbial bacteria die off?

http://en.wikiped...reaction
deatopmg
2.1 / 5 (7) Aug 24, 2010
So the situation is no where as bad as some people, like solrey, wish. Clearly this v. rapid biodegradation could have been surmised from the results of the similar sized IXTOC release in the gulf some 30 yrs ago.

These hydrocarbons are "free lunch" for these organisms.
Shootist
2.1 / 5 (7) Aug 25, 2010
And when these oil loving microbes run out of food (oil) and start dieing off, what then? Will there be any toxic side effects, much like there are when other microbial bacteria die off?

http://en.wikiped...reaction


There might be. There might be some other critter that specializes in eating the dead critters. Time will tell.

The important thing is; the greens and their panicky allies, were wrong, again.

Not sayin' we shouldn't be "stewards" of the environment and all that, just not at the cost of sitting in the dark and freezing.
Noumenon
4.5 / 5 (53) Aug 25, 2010
When one study reaches opposite conclusions as all the rest, I say follow the money.


You can say that about either side; the tree-hugging anti-oil environMentalists are funded in a big way. Where's the oil then? This is similar to the AGW industry hysteria, in that it is most likely over blown non sense,... and in the end science learns why their estimates where so exaggerated.
Eric_B
5 / 5 (3) Aug 25, 2010
Did anyone bother to read the fine print?

"EBI is a partnership led by the University of California (UC) Berkeley and including Berkeley Lab and the University of Illinois that is funded by a $500 million, 10-year grant from BP."

How EXACTLY is it possible that any other slant to the conclusions would be reached in this study? Does it take $50 a year to study these mudbugs? Only when the conclusion is foregone.
Noumenon
4.5 / 5 (50) Aug 25, 2010
The study is to determine what happened to the oil. Where is it? Where are the constant barrage of images of oil covered birds, and slick shores full of dead fish, one would expect from the environmentalist anti-big-oil backing media? Kind of hard for BP to hide that amount of oil.

So let's say BP paid off the researchers at the Berkeley lab and the who study is corrupt, where is the oil then? What's the alternative conclusion?
3432682
1.7 / 5 (6) Aug 25, 2010
The Gulf is good at eating oil. Natural seeps leak 50-100 million gallons/year of oil. We knew the oil was being digested. Now we know more about how. Sorry to disappoint the greenie propaganda industry, and those scientists who are trying to get hundreds of millions of dollars to study what happened to the "22 mile plume".
Skeptic_Heretic
5 / 5 (2) Aug 25, 2010
Before everyone lands the plane on the carrier and declares "Mission Accomplished" remember that the fallout from the Alaskan gulf spills is still being tallied and that was almost 20 years ago.

Similar headlines abounded then as well.
HealingMindN
3 / 5 (2) Aug 25, 2010
A $500 million grant to the University of California, Berkeley, Lawrence Berkeley National Laboratory, and the University of Illinois at Urbana-Champaign, to create an Energy Biosciences Institute has recently come under attack, over concerns about the global impacts of the research and privatisation of public universities...
http://en.wikiped.../wiki/BP

No, sorry, I prefer an unbiased report. Then again, with all the "grants" that bp is making, is there an objective, truly scientific report available?

Here's an interesting story: "Oil spill taints UC Berkeley's BP-funded research" http://www.boston...esearch/
Skeptic_Heretic
1 / 5 (1) Aug 26, 2010
A $500 million grant to the University of California, Berkeley, Lawrence Berkeley National Laboratory, and the University of Illinois at Urbana-Champaign, to create an Energy Biosciences Institute has recently come under attack, over concerns about the global impacts of the research and privatisation of public universities...
http://en.wikiped.../wiki/BP

I don't disagree with your standpoint, but, you said I prefer an unbiased source, then you linked to one of the most biased rags ever printed in Massachusetts.

The Globe is deeply in the pockets of activists, they're very deeply biased.
mosahlah
1 / 5 (2) Aug 28, 2010
The oil spill hysteria was reminicent of our recent financial collapse hysteria that contributed to the great stimulus/embezzlement travesty.