New molecular signaling cascade increases glucose uptake

Aug 20, 2010

Skeletal muscles combust both lipids and carbohydrates during exercise. The carbohydrates consist of both glycogen stored in the muscles as well as glucose extracted from the blood. Being a major sink for glucose disposal, skeletal muscle represents an important model tissue for studying the intracellular signaling pathways leading to increased glucose transport.

This is important because it is known that the contraction-induced signaling to stimulate glucose transport is distinct from that utilized by insulin. Thus, for individuals in which insulin only has little effect () the contraction-induced pathway represents an alternative pathway to increase glucose uptake. For pharmaceutical companies this pathway represents a possible and attractive alternative signaling pathway for pharmacological intervention in regulating glucose homeostasis.

Researchers from Department of Exercise and Sport Sciences, University of Copenhagen have in collaboration with scientists at the Joslin Diabetes Center, Harvard University focused on a novel protein called SNARK which was found be activated in skeletal muscle in response to contraction and exercise in both rodents and humans. Furthermore, by the use of transgenic animal models and by over-expressing an inactive mutant of SNARK in mouse skeletal muscle, it could be shown that contraction-induced glucose uptake was severely blunted by 40-50% compared with control animals.

The data in this study clearly support a role for SNARK in regulating glucose transport during and exercise, but it also strongly suggests that multiple, or redundant signals may mediate the effects of contraction on activating glucose transport.

These data have been published in Proceedings of the Nation Academy of Sciences (PNAS) on 16. August 2010 in an article called "Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse ".

Explore further: Growing a blood vessel in a week

Provided by University of Copenhagen

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Apelin hormone injections powerfully lower blood sugar

Nov 04, 2008

By injecting a hormone produced by fat and other tissues into mice, researchers report in the November Cell Metabolism that they significantly lowered blood sugar levels in normal and obese mice. The findings suggest that t ...

Exercise pivotal in preventing and fighting type II diabetes

Feb 07, 2007

One in three American children born in 2000 will develop type II diabetes, according to the U.S. Centers for Disease Control and Prevention (CDC). A new study at the University of Missouri-Columbia says that acute exercise ...

Power-boosting signal in muscle declines with age

Feb 06, 2007

As people age, they may have to exercise even harder to get the benefits afforded to younger folk. That's the suggestion of a report in the February issue of the journal Cell Metabolism, published by Cell Press, showing that a ...

Completely novel action of insulin unveiled

Nov 05, 2008

A PhD student at Sydney's Garvan Institute of Medical Research has uncovered an important piece in the puzzle of how insulin works, a problem that has plagued researchers for more than 50 years. This finding brings us one ...

Recommended for you

Growing a blood vessel in a week

18 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

21 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0