Putting the squeeze on Alzheimer's (w/ Video)

Aug 20, 2010

Brain cells exposed to a form of the amyloid beta protein, the molecule linked to Alzheimer's disease, become stiffer and bend less under pressure, researchers at UC Davis have found. The results reveal one mechanism by which the amyloid protein damages the brain, a finding that could lead to new ways to screen drugs for Alzheimer's and similar diseases.

The researchers, led by Gang-Yu Liu, professor of chemistry, and Lee-Way Jin, associate professor of pathology and a researcher at the UC Davis Alzheimer's Disease Center, used a cutting-edge microscope to measure how cells respond to physical pressure. Their findings are published this month in the .

The microscope, located at UC Davis' Spectral Imaging Facility, combines an and a confocal microscope. It is one of a handful in the United States and one of the most advanced of its type, Liu said.

An atomic force microscope uses a fine needle to visualize the features of a surface with exquisite resolution and precision; it is used more often in materials science than in . A confocal microscope can view living cells in culture media and in three dimensions.

The team put a glass microbead on the tip of the AFM needle and used it to press down on living cells. By measuring the forces required to squeeze the cell under the bead, they could calculate the stiffness of both the cell membrane and the cell contents.

"This is a simple method for measuring the stiffness of a cell — like pushing down on a spring," Liu said.

This video is not supported by your browser at this time.
A nerve cell deforms under pressure from a bead mounted on a very fine needle. Amyloid protein, found in Alzheimer's Disease, makes cells stiffer and less resilient under pressure. Videography by Gang-Yu Liu, Department of Chemistry

Amyloid-beta peptide is found in tangled and plaques in the brains of Alzheimer's patients and is thought to be the cause of the disease and similar conditions, such as "mad cow" disease. It can exist in different forms: as individual peptide units (); as short chains of peptides (oligomers); and as fibrils.

Liu and Jin exposed cultured neurons () to the three different types of amyloid, and measured their response to pressure. They found that the intermediate, oligomer, form had the greatest effect in stiffening the cells.

From the measurements, Liu and Jin deduced that the amyloid oligomers probably insert themselves into the , changing its properties. Some of the molecules cross the membrane completely and affect the network of proteins that provides a "skeleton" within the cell.

They also found that when the cells were treated with amyloid oligomers, other ions flooded into the cell, showing that the membrane's function had been damaged.

This video is not supported by your browser at this time.
This video shows a glass microbead being manuevered over a live white blood cell and then pushing down on the cell. Videography by Gang-Yu Liu, Department of Chemistry

The "squeeze" test could be used as a screening method for potential drugs for Alzheimer's and other diseases, Liu and Jin predicted.

Normal brain cells are the "squishiest" among the cell types they have tested with the technique, Liu said. The cells readily deform under pressure, but recover. At the other end of the scale, skin cells (keratinocytes) are very stiff and resistant to pressure, but shatter under stress.

Explore further: Study reveals one reason brain tumors are more common in men

Provided by University of California - Davis

3 /5 (2 votes)

Related Stories

New, unique microscope for nanotech

Dec 09, 2005

UC Davis researchers in nanotechnology, chemistry and biology now have access to one of the most advanced microscopes of its type in the world. The new Spectral Imaging Facility, opened this fall, is a combination of an atomic ...

Researchers find new piece in Alzheimer's puzzle

Feb 25, 2009

Yale researchers have filled in a missing gap on the molecular road map of Alzheimer's disease. In the Feb. 26 issue of the journal Nature, the Yale team reports that cellular prion proteins trigger the process by which ...

Anti-inflammatory drug blocks brain plaques

Jun 24, 2008

Brain destruction in Alzheimer's disease is caused by the build-up of a protein called amyloid beta in the brain, which triggers damaging inflammation and the destruction of nerve cells. Scientists had previously shown that ...

Scientists find new cause of Alzheimer's

Apr 19, 2006

Belgium researchers say they are the first to demonstrate the quantity of amyloid protein in brain cells is a major factor of Alzheimer's disease.

Recommended for you

Clues to curbing obesity found in neuronal 'sweet spot'

10 hours ago

Preventing weight gain, obesity, and ultimately diabetes could be as simple as keeping a nuclear receptor from being activated in a small part of the brain, according to a new study by Yale School of Medicine ...

Small RNAs in blood may reveal heart injury

19 hours ago

(Medical Xpress)—Like clues to a crime, specific molecules in the body can hint at exposure to toxins, infectious agents or even trauma, and so help doctors determine whether and how to treat a patient. ...

User comments : 0