Paper highlight: Nanoscopic patterned materials with tunable dimensions

Aug 19, 2010
Artist's rendition of nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers.

A collaboration between CNM's Electronic & Magnetic Materials & Devices Group and Argonne's Energy Systems Division has led to an entirely new way to fabricate both two- and three-dimensional functional nanomaterials.

Their approach combines block copolymer self-assembly with the self-limiting and selective process of atomic layer deposition.

By choosing suitable polymer and deposition precursor chemistries, highly selective deposition can be achieved in which the inorganic material grows within only one of the polymer blocks.

Through rational design of block copolymers and selection of deposition parameters, patterned designer materials with controlled size, spacing, symmetry, and composition can be synthesized.

Potential applications for this method extend to virtually all technologies in which periodic nanomaterial structures are desirable.

Explore further: Dye-sensitized solar cell absorbs a broad range of visible and infrared wavelengths

More information: Q. Peng, Y.-C. Tseng, S. B. Darling, and J. W. Elam, Advanced Materials, in press.

add to favorites email to friend print save as pdf

Related Stories

New Research on Nanodiamond Materials

Sep 09, 2008

In a recent special issue of Chemical Vapor Deposition devoted to nanodiamonds, editors Amanda Barnard and Oliver Williams note that "the diversity of nanocarbon structures and allotropes has led to a plet ...

Researchers find new route to nano self-assembly

Oct 22, 2009

(PhysOrg.com) -- If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance towards this goal has been achieved by researchers ...

Recommended for you

A new way to make microstructured surfaces

21 hours ago

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Tough foam from tiny sheets

Jul 29, 2014

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

User comments : 0