Eclipsing pulsar promises clues to crushed matter

Aug 17, 2010
J1749 is the first accreting millisecond pulsar to undergo eclipses. The pulsar and its companion star are separated by 1.22 million miles, or about five times the distance between Earth and the moon. Irradiated by the pulsar's intense X-rays, the star's outer layers puff up to make it about 20 percent larger than a star of its mass and age should be. This artist's rendering includes additional data about the system. Credit: NASA/GSFC

Astronomers using NASA's Rossi X-ray Timing Explorer (RXTE) have found the first fast X-ray pulsar to be eclipsed by its companion star. Further studies of this unique stellar system will shed light on some of the most compressed matter in the universe and test a key prediction of Einstein's relativity theory.

The pulsar is a rapidly spinning neutron star -- the crushed core of a massive star that long ago exploded as a supernova. pack more than the sun's mass into a ball nearly 60,000 times smaller. With estimated sizes between 10 and 15 miles across, a neutron star would just span Manhattan or the District of Columbia.

"It's difficult to establish precise masses for neutron stars, especially toward the higher end of the mass range theory predicts," said Craig Markwardt at NASA's Goddard Space Flight Center in Greenbelt. "As a result, we don't know their internal structure or sizes as well as we'd like. This system takes us a step closer to narrowing that down."

Known as Swift J1749.4-2807 -- J1749 for short -- the system erupted with an X-ray outburst on April 10. During the event, RXTE observed three eclipses, detected X-ray pulses that identified the neutron star as a pulsar, and even recorded pulse variations that indicated the neutron star's orbital motion.

J1749 was discovered in June 2006, when a smaller eruption brought it to the attention of NASA's . Observations by Swift, RXTE and other spacecraft revealed that the source was a binary system located 22,000 light-years away in the constellation Sagittarius and that the neutron star was actively capturing, or accreting, gas from its stellar partner. This gas gathers into a disk around the neutron star.

"Like many accreting binary systems, J1749 undergoes outbursts when instabilities in the accretion disk allow some of the gas to crash onto the neutron star," said Tod Strohmayer, RXTE's project scientist at Goddard.

The pulsar's powerful magnetic field directs infalling gas onto the star's magnetic poles. This means that the energy release occurs in hot spots that rotate with the neutron star, producing fast X-ray pulses. How fast? J1749 is spinning 518 times a second -- a city-sized sphere rotating as fast as the blades of a kitchen blender.

In addition, the pulsar's orbital motion imparts small but regular changes in the frequency of the X-ray pulses. These changes indicate that the stars revolve around each other every 8.8 hours.

During the week-long outburst, RXTE observed three periods when J1749's X-ray emission briefly disappeared. Each eclipse, which lasts 36 minutes, occurs whenever the neutron star passes behind the normal star in the system.

"This is the first time we've detected X-ray eclipses from a fast pulsar that is also accreting gas," Markwardt said. "Using this information, we now know the size and mass of the with unprecedented accuracy."

By comparing RXTE observations across the theoretical mass range for neutron stars, the astronomers determined that J1749's normal star weighs in with about 70 percent of the sun's mass -- but the eclipses indicate that the star is 20 percent larger than it should be for its mass and apparent age.

"We believe that the star's surface is 'puffed up' by radiation from the pulsar, which is only about a million miles away from it," Markwardt explained. "This additional heating probably also makes the star's surface especially disturbed and stormy."

Writing about their findings in the July 10 issue of The Astrophysical Journal Letters, Markwardt and Strohmayer note that they have all but one orbital variable needed to nail down the mass of the pulsar, which is estimated to be between about 1.4 and 2.2 times the sun's mass.

"We need to detect the normal star in the system with optical or infrared telescopes," Strohmayer said. "Then we can measure its motion and extract the same information about the pulsar that the pulsar's motion told us about the star."

However, a pioneering X-ray measurement well within the capability of RXTE may make a hunt for the star irrelevant.

One consequence of relativity is that a signal -- such as a radio wave or an X-ray pulse -- experiences a slight timing delay when it passes very close to a massive object. First proposed by Irwin Shapiro at the Massachusetts Institute of Technology (MIT) in Cambridge, Mass., in 1964 as a new test for predictions of Einstein's relativity, the delay has been demonstrated repeatedly using radio signals bounced off of Mercury and Venus and experiments involving spacecraft communications.

"High-precision measurements of the X-ray pulses just before and after an eclipse would give us a detailed picture of the entire system," Strohmayer said. For J1749, the predicted Shapiro delay is 21 microseconds, or 10,000 times faster than the blink of an eye. But RXTE's superior timing resolution allows it to record changes 7 times faster.

With only three eclipses observed during the 2010 outburst, RXTE didn't capture enough data to reveal a large delay. However, the measurements set a limit on how massive the normal star can be. The study shows that if the star's mass was greater than 2.2 times the sun's, RXTE would have seen the delay.

"We believe this is the first time anyone has set realistic limits for this effect at X-ray wavelengths outside of our solar system," Markwardt noted. "The next time J1749 has an outburst, RXTE absolutely could measure its Shapiro delay."

Launched in late 1995, RXTE is second only to Hubble as the longest serving of NASA's currently operating astrophysics missions. RXTE discovered the first accreting millisecond pulsar -- SAX J1808.4-3658 -- in 1998 and continues to provide a unique observing window into the extreme environments of neutron stars and black holes.

Explore further: Quest for extraterrestrial life not over, experts say

Related Stories

Fermi telescope unveils a dozen new pulsars

Jan 06, 2009

(PhysOrg.com) -- NASA's Fermi Gamma-ray Space Telescope has discovered 12 new gamma-ray-only pulsars and has detected gamma-ray pulses from 18 others. The finds are transforming our understanding of how these ...

Three satellites needed to bring out 'shy star'

Jul 13, 2005

An international team of scientists has uncovered a rare type of neutron star so elusive that it took three satellites to identify it. The findings, made with ESA’s Integral satellite and two NASA satellites, rev ...

The case of the neutron star with a wayward wake

Jun 01, 2006

A long observation with NASA's Chandra X-ray Observatory revealed important new details of a neutron star that is spewing out a wake of high-energy particles as it races through space. The deduced location ...

Astronomers weigh 'recycled' millisecond pulsar

Jan 12, 2006

A team of U.S. and Australian astronomers is announcing today that they have, for the first time, precisely measured the mass of a millisecond pulsar -- a tiny, dead star spinning hundreds of times every second. ...

Recommended for you

Quest for extraterrestrial life not over, experts say

Apr 18, 2014

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Continents may be a key feature of Super-Earths

Apr 18, 2014

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Exoplanets soon to gleam in the eye of NESSI

Apr 18, 2014

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

jamey
not rated yet Aug 17, 2010
The additional information in the enlarged view of the image would be nice to see - if the enlarged image actually enlarged enough to read it. Perhaps a link to the original source of the image would work better?
frajo
5 / 5 (3) Aug 18, 2010
Justsayin
not rated yet Aug 22, 2010

More news stories

Another fireball explodes over Russia

Why does Russia seem to get so many bright meteors? Well at 6.6 million square miles it's by far the largest country in the world plus, with dashboard-mounted cameras being so commonplace (partly to help ...

ISEE-3 comes to visit Earth

(Phys.org) —It launched in 1978. It was the first satellite to study the constant flow of solar wind streaming toward Earth from a stable orbit point between our planet and the sun known as the Lagrangian ...

NASA's MMS observatories stacked for testing

(Phys.org) —Engineers at NASA's Goddard Space Flight Center in Greenbelt, Md., accomplished another first. Using a large overhead crane, they mated two Magnetospheric Multiscale, or MMS, observatories – ...

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

Teachers' scare tactics may lead to lower exam scores

As the school year winds down and final exams loom, teachers may want to avoid reminding students of the bad consequences of failing a test because doing so could lead to lower scores, according to new research published ...