Developmental problems: Some exist in the genes

Aug 17, 2010

Everyone is special in their own unique way. From a genetic point of view, no two humans are genetically identical. This means that DNA for each individual contains variants that are more or less comm. on in the overall population.

Some gene variations are actually genetic deletions, where sections of DNA 'code' are missing entirely. These variants are likely to have important effects on gene function and, therefore, likely to contribute to diseases associated with that gene. But what happens when multiple are disrupted in a single family?

A large collaborative study led by scientists based in Oxford, Bologna and Utrecht sheds some light on this complicated situation by describing the genomic characterization of a family with two rare microdeletions, in CNTNAP5 and DOCK4. Multiple members of this family were diagnosed with , , and/or learning or social difficulties.

The revealed that the CNTNAP5 deletion segregated with autism. In contrast, the DOCK4 deletion was present in multiple individuals without autism, but this gene microdeletion co-segregated with reading difficulties.

"This report provides further evidence linking CNTNAP genes with autism, one of the most promising gene families in autism research," commented Dr. John Krystal, Editor of Biological Psychiatry, where this research is published. "But it also highlights how complex the connection between genes and syndromes can be, supporting the importance of DOCK4 for brain development - particularly in circuits involved in reading- but questioning its role in autism."

"This is another example of the emerging theme whereby multiple rare genomic variants within a single family might, in combination, lead to the variable phenotypes associated with autism spectrum disorders," said first author Dr. Alistair Pagnamenta.

Interestingly, CNTNAP5 is closely related to other genes that can influence susceptibility to autism, such as CNTNAP2, which was first identified in 2008. DOCK4 is thought to be involved in the growth and development of nerve cells in the brain. Together, these results may open up new lines of research to help understand mechanisms behind neurological disorders and .

The authors have noted that additional studies, which are needed to confirm these associations, are already underway.

Explore further: Diet for your DNA: Novel nutrition plan sparks debate around data protection

add to favorites email to friend print save as pdf

Related Stories

More gene mutations linked to autism risk

Jun 25, 2009

(PhysOrg.com) -- More pieces in the complex autism inheritance puzzle are emerging in the latest study from a research team including geneticists from The Children's Hospital of Philadelphia, the University ...

Recurrent genetic deletion linked to autism

Jan 08, 2008

Loss of a small portion of chromosome 16, known as 16p11.2, is significantly associated with autism report researchers from the University of Chicago Medical Center, the University of Illinois at Chicago, and the Roswell ...

Different genes may cause autism in boys and girls

Aug 01, 2006

Like detectives trying to solve a murder case, researchers searching for the biological cause of autism have come up with some surprising suspects. They've found that different genes may be responsible for causing autism ...

Tiny, spontaneous gene mutations may boost autism risk

Mar 15, 2007

Tiny gene mutations, each individually rare, pose more risk for autism than had been previously thought, suggests a study funded in part by the National Institute of Mental Health, a component of the National Institutes of ...

Recommended for you

New research software automates DNA analysis

Oct 20, 2014

At the core of medical research is problem-solving, which is exactly what two PhD scientists did when they set out to eliminate a common, time-consuming task performed in research laboratories around the world.

User comments : 0