Scientists successfully use human induced pluripotent stem cells to treat Parkinson's in rodents

Aug 16, 2010

Researchers at the Buck Institute for Age Research have successfully used human induced pluripotent stem cells (iPSCs) to treat rodents afflicted with Parkinson's Disease (PD). The research, which validates a scalable protocol that the same group had previously developed, can be used to manufacture the type of neurons needed to treat the disease and paves the way for the use of iPSC's in various biomedical applications. Results of the research, from the laboratory of Buck faculty Xianmin Zeng, Ph.D., are published August 16, 2010 in the on-line edition of the journal Stem Cells.

Human iPSC's are a "hot" topic among scientists focused on regenerative medicine. "These cells are reprogrammed from existing cells and represent a promising unlimited source for generating patient-specific cells for biomedical research and personalized medicine," said Zeng, who is lead author of the study. "Human iPSCs may provide an end-run around immuno-rejection issues surrounding the use of human embryonic (hESCs) to treat disease," said Zeng. "They may also solve bioethical issues surrounding hESCs."

Researchers in the Zeng lab used human iPSCs that were derived from skin and and coaxed them to become dopamine-producing . Dopamine is a produced in the mid-brain which facilitates many critical functions, including motor skills. Patients with PD lack sufficient dopamine; the disease is
a progressive, incurable that affects 1.5 million Americans and results in tremor, slowness of movement and rigidity.

Researchers transplanted the iPSC-derived neurons into rats that had mid-brain injury similar to that found in human PD. The cells became functional and the rats showed improvement in their motor skills. Zeng said this is the first time iPSC-derived cells have been shown to engraft and ameliorate behavioral deficits in animals with PD. Dopamine-producing neurons derived from hESCs have been demonstrated to survive and correct behavioral deficits in PD in the past. "Both our functional studies and genomic analyses suggest that overall iPSCs are largely similar to hESCs," said Zeng.

The research also addresses the current lack of a robust system for the efficient production of functional dopamine-producing neurons from human iPSCs, Zeng said. The protocol used to differentiate the iPSCs was similar to one developed by Zeng and colleagues for hESCs. "Our approach will facilitate the adoption of protocols to good manufacturing practice standards, which is a pre-requisite if we are to move iPSC's into clinical trials in humans," said Zeng.

"The studies are very encouraging for potential cell therapies for Parkinson's disease," said Alan Trounson, Ph.D., the President of the California Institute for Regenerative Medicine. "The researchers showed they could produce quantities of dopaminergic neurons necessary to improve the behavior of a rodent model of PD. We look forward to further work that could bring closer a new treatment for such a debilitating disease," Trounson said.

Explore further: Scientists discover protein that can accelerate cancer patients' recovery after radiation and chemotherapy

Provided by Buck Institute for Age Research

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Replacing the cells lost in Parkinson disease

Dec 03, 2007

Parkinson disease (PD) is caused by the progressive degeneration of brain cells known as dopamine (DA) cells. Replacing these cells is considered a promising therapeutic strategy. Although DA cell–replacement therapy by ...

Recommended for you

Team untangles the biological effects of blue light

14 hours ago

Blue light can both set the mood and set in motion important biological responses. Researchers at the University of Pennsylvania's School of Medicine and School of Arts and Sciences have teased apart the ...

Mouse model provides new insight in to preeclampsia

14 hours ago

Worldwide, preeclampsia is a leading cause of maternal deaths and preterm births. This serious pregnancy complication results in extremely high blood pressure and organ damage. The onset of preeclampsia is associated with ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

sender
not rated yet Aug 17, 2010
Now to utilize magnetotactic carriers and viral phenotype carriers to create gene inclusion therapies.