Novel role: EZH2 boosts creation of ovarian cancer blood vessels

Aug 16, 2010

A protein associated with cancer progression when abundant inside of tumors also unexpectedly regulates the creation of new blood vessels that feed the tumor outside, a research team led by scientists at The University of Texas MD Anderson Cancer Center reports in the August edition of Cancer Cell.

By using a nanoparticle-based gene-silencing system to block production of the protein, the researchers inhibited formation of new (angiogenesis) to the tumor and caused a steep reduction in tumor burden in a mouse model of ovarian cancer.

"We've discovered that EZH2 promotes by shutting down genes that block formation of new blood vessels," said study senior author Anil Sood, M.D., professor in UT MD Anderson's departments of Gynecologic Oncology and Cancer Biology. "Tumors treated with current anti-angiogenesis drugs eventually progress. This study presents a new mechanism for angiogenesis that opens the door for development of new treatment approaches."

EZH2 is a member of a group of proteins known to repress gene expression. It has been associated with the progression and spread of bladder, breast, prostate and gastric cancers and one type of cancer of the pharynx.

Increased EZH2 is tied to decreased survival for patients

An examination of 180 ovarian found that the protein was overexpressed in the tumor in 66 percent of cases and in the endothelial of 67 percent of samples.

Endothelial cells line the inside of blood vessels and are crucial to angiogenesis.

Increased expression of the protein in either tumor or endothelial cells was associated with late-stage and high-grade disease and decreased median survival. Patients with increased EZH2 levels in their tumors had a median survival of 2.5 years compared to 7.33 years for those without. For overexpression in the endothelial cells, the difference was 2.33 years versus 8.33 years for those with normal levels.

In a series of lab experiments, the team found that vascular endothelial growth factor (VEGF), a known stimulator of angiogenesis, boosts the level of EZH2 in endothelial cells. EZH2 then silences the vasohibin1 (VASH1) gene, which normally inhibits blood-vessel-formation. Silencing the EZH2 gene in the tumor's endothelial cells reactivates VASH1, reducing angiogenesis and ovarian cancer growth in mice.

Silencing ezh2 reduces tumor weight

The ezh2 gene was targeted separately in tumor cells and in endothelial cells by delivery of small interfering RNA (siRNA) - short snippets of RNA that block - to mice with one of two strains of ovarian cancer.

Treating mice with siRNA that silenced ezh2 in the tumor-associated endothelial cells reduced average tumor weight by 62 percent and 40 percent in the two strains of cancer compared with control mice.
Hitting the gene only in the tumor had little significant effect on tumor burden.
Silencing in both tumor and endothelial cells reduced average tumor weight by 83 percent and 65 percent in the two cancer strains.
Additional tests showed that silencing ezh2 reduced both he number of blood vessels serving the tumors and cell proliferation while increasing programmed death of tumor cells.

siRNA delivery system relies on crustacean shell component

Sood and co-author Gabriel Lopez-Berestein, M.D., professor in UT MD Anderson's Department of Experimental Therapeutics, have developed delivery systems that package siRNA with a fatty ball called a liposome to silence specific genes in .

"Those systems are quite effective for delivery to tumors and tumor cells but not as effective for delivery to tumor vasculature," Sood said. They jointly developed a new delivery system that packages siRNA into chitosan nanoparticles. Chitosan is derived from a chitin, a structural component in the shells of crustaceans.

Chitosan nanoparticles carry a slight positive electrical charge, making them attractive to the mostly negatively charged endothelial cells. The nanoparticles penetrate the tumor by way of its vasculature, so the new system hits both targets.

The nanoparticles accumulate in the cell and vasculature passively as they circulate in the blood stream. Chitosan nanoparticles are so small that they can flow through tiny holes in the tumor vasculature. They also accumulate in other organs, so the researchers are working to add a targeting molecule that will limit nanoparticle uptake to tumors and their vasculature.

Explore further: US OKs first-ever DNA alternative to Pap smear (Update)

add to favorites email to friend print save as pdf

Related Stories

Tumor vessels identified by unique molecular markers

Jun 11, 2007

Results from a new study have made it easier for scientists to distinguish between growing blood vessels in healthy tissues and those that are associated with tumors. This is a significant finding because this distinction, ...

Vitamin A pushes breast cancer to form blood vessel cells

Jul 16, 2008

Researchers at Georgetown University Medical Center have discovered that vitamin A, when applied to breast cancer cells, turns on genes that can push stem cells embedded in a tumor to morph into endothelial cells. These cells ...

Recommended for you

US OKs first-ever DNA alternative to Pap smear (Update 2)

9 hours ago

U.S. government health regulators have cleared a genetic test from Roche as a first-choice screening option for cervical cancer. It was a role previously reserved for the Pap smear, the decades-old mainstay of women's health.

New breast cancer imaging method promising

15 hours ago

The new PAMmography method for imaging breast cancer developed by the University of Twente's MIRA research institute and the Medisch Spectrum Twente hospital appears to be a promising new method that could ...

Palliation is rarely a topic in studies on advanced cancer

16 hours ago

End-of-life aspects, the corresponding terminology, and the relevance of palliation in advanced cancer are often not considered in publications on randomized controlled trials (RCTs). This is the result of an analysis by ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.