Spinal muscular atrophy may also affect the heart

Aug 11, 2010

Along with skeletal muscles, it may be important to monitor heart function in patients with spinal muscular atrophy (SMA). These are the findings from a study conducted by Nationwide Children's Hospital and published online ahead of print in Human Molecular Genetics. This is the first study to report cardiac dysfunction in mouse models of SMA.

SMA is a debilitating neurological disease that leads to wasting away of muscles throughout the body. Historically, scientists and physicians believed that SMA only affected skeletal muscles; however, new data suggests that this genetic disease may also impact the heart.

"A few studies regarding SMA patients have implicated the involvement of the cardiovascular and the ," said the study's co-author Brian Kaspar, PhD, principal investigator in the Center for Gene Therapy at The Research Institute at Nationwide Children's Hospital. "However, there have been few to no highly powered and controlled studies to determine how common these cardiovascular anomalies are in these patients."

The reports of altered blood flow and slowed heart rate in some SMA patients prompted Kaspar's team to examine whether a cardiac deficit is present in a mouse model of severe SMA, developed by Arthur Burghes, PhD, professor of Molecular and Cellular Biochemistry at The Ohio State University College of Medicine, which is routinely used for drug and therapeutic-based screening.

They analyzed heart structure of the SMA mice compared with normal mice, and found that there were significant structural changes occurring in the heart of the SMA mice, along with severely impaired left-ventricular function. SMA mice also had significantly lower heart rates. After examining the underlying structure of the mouse they found it similar to the of a heart biopsy from patient with type 3 SMA.

Kaspar's team recently developed a gene therapy approach shown to successfully deliver the missing SMN protein to SMA mice and improve neuromuscular function. Next, the team studied whether the discovered heart defects could be corrected by this gene delivery treatment. Results showed that restoring SMN levels completely restored heart rates and prevented the early development of dilated cardiomyopathy.

Pam Lucchesi, PhD, director of the Center for Cardiovascular and Pulmonary Research at The Research Institute at Nationwide Children's Hospital and study co-author, says it is still not clear which mechanisms are fully responsible for the heart deficits seen in the SMA mice, but data suggests that neuronal, autonomic and developmental components all may play a role.

"Our gene delivery strategy has unique advantages in that it targets neurons within the central and peripheral nervous system as well as the cardiac tissues," said Lucchesi, also a faculty member at The Ohio State University College of Medicine.

More research is needed to determine whether the cardiac deficits are unique to the mouse or whether SMA patient of various severities have or will develop similar issues. Still, Kaspar, also on the faculty at The Ohio State University College of Medicine, says clinicians should be acutely aware of potential dysfunction in a subset of SMA patients.

"Increasing reports of autonomic dysfunction together with our current findings warrant increased attention to the cardiac status of SMA patients, and potentially highlights the need to investigate cardiac interventions alongside neuromuscular treatments," said Kaspar.

Explore further: Scientists discover an on/off switch for aging cells

add to favorites email to friend print save as pdf

Related Stories

Rare window on spinal muscular atrophy genetics

Apr 07, 2009

Caused by a mutation of the SMN gene, spinal muscular atrophy (SMA) is an infantile and juvenile neurodegenerative disorder where motor neuron loss causes progressive paralysis. A new study published in the open access journal ...

Toward an effective treatment for a major hereditary disease

Oct 13, 2008

Scientists are reporting a key advance toward developing the first effective drug treatment for spinal muscular atrophy (SMA), a genetic disease that involves motor neuron loss and occurs in 1 out of every 6,000 births. SMA ...

Researchers gain new insights on spinal muscular atrophy

May 29, 2008

Researchers from the University of Pennsylvania School of Medicine discovered that the effect of a protein deficiency, which is the basis of the neuromuscular disease spinal muscular atrophy (SMA), is not restricted to motor ...

Recommended for you

Scientists discover an on/off switch for aging cells

7 hours ago

(Medical Xpress)—Scientists at the Salk Institute have discovered an on-and-off "switch" in cells that may hold the key to healthy aging. This switch points to a way to encourage healthy cells to keep dividing ...

Gene variant that dramatically reduces 'bad' lipids

Sep 16, 2014

In the first study to emerge from the UK10K Project's cohort of samples from the general public, scientists have identified a rare genetic variant that dramatically reduces levels of certain types of lipids in the blood. ...

New diagnostic method identifies genetic diseases

Sep 16, 2014

People with genetic diseases often have to embark on an odyssey from one doctor to the next. Fewer than half of all patients who are suspected of having a genetic disease actually receive a satisfactory diagnosis. Scientists ...

User comments : 0