Flower-dwelling yeast licensed for use against scab disease

Aug 06, 2010

A beneficial yeast that tolerates fungicide may offer a "one-two punch" against Fusarium graminearum, the fungal culprit behind Fusarium head blight ("scab").

U.S. Department of Agriculture (USDA) and Ohio State University (OSU) scientists isolated an improved variant of the Cryptococcus flavescens about two years ago, and are evaluating its potential as a biocontrol agent.

In susceptible wheat and barley varieties, scab-afflicted kernels appear shrunken and chalky-white. The fungus can also produce a mycotoxin that can diminish the grain's value or make it less safe to eat.

Spraying fungicide can reduce scab by 50 to 60 percent; however, farmers are required to stop using the chemicals soon after wheat starts to flower. Although this measure keeps fungicide residues to a minimum, it can leave the grain vulnerable to new invasions by the scab fungus, notes David Schisler, a plant pathologist with USDA's Agricultural Research Service (ARS). He works at the ARS Crop Bioprotection Research Unit in Peoria, Ill. ARS is USDA's principal intramural scientific research agency.

Since 1998, he has teamed with OSU professor Mike Boehm and others to exploit the ability of some microorganisms to outcompete F. graminearum for space and nutrients in wheat's flowers and seed heads.

In December 2009, their "top pick," the naturally occurring yeast C. flavescens, was licensed by Sci Protek, Inc., of Visalia, Calif. In July, Sci Protek received a second license, this time for strain OH 182.9 3C, a fungicide-tolerant variant of C. flavescens recently discovered by Schisler and Boehm. ARS and OSU are working together in the patenting and licensing of the technology.

According to Schisler, 3C is better at preventing scab than its predecessor and can be applied to wheat either alone or combined with prothioconazole or other similar chemistries. In 2009 field trials, 3C reduced scab by 30 to 70 percent, versus 10 to 50 percent for C. flavescens. And when combined with prothioconazole, 3C reduced kernel damage by 85 percent versus 60 percent for prothioconazole alone.

A second round of multi-state trials aims to replicate the results, potentially opening the door to dual protection for , both before and after it flowers.

Explore further: 'Killer sperm' prevents mating between worm species

More information: This research was published in the Proceedings of the National Fusarium Head Blight Forum.

Provided by United States Department of Agriculture

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Diverse wheat tapped for antifungal genes

Apr 01, 2010

Asian wheat may offer novel genes for shoring up the defenses of U.S. varieties against Fusarium graminearum fungi that cause Fusarium head blight (FHB) disease.

Fungal fumes clear out crop pests

Feb 19, 2010

A cocktail of compounds emitted by the beneficial fungus Muscodor albus may offer a biologically based way to fumigate certain crops and rid them of destructive pests. That's the indication from Agricultural Research Servic ...

Researchers developing better wheat

Feb 16, 2006

Eighteen universities across the United States are combining desirable genes from different varieties of wheat to make better and more competitive varieties.

Recommended for you

'Killer sperm' prevents mating between worm species

3 hours ago

The classic definition of a biological species is the ability to breed within its group, and the inability to breed outside it. For instance, breeding a horse and a donkey may result in a live mule offspring, ...

Rare Sri Lankan leopards born in French zoo

6 hours ago

Two rare Sri Lankan leopard cubs have been born in a zoo in northern France, a boost for a sub-species that numbers only about 700 in the wild, the head of the facility said Tuesday.

Japan wraps up Pacific whale hunt

7 hours ago

Japan announced Tuesday that it had wrapped up a whale hunt in the Pacific, the second campaign since the UN's top court ordered Tokyo to halt a separate slaughter in the Antarctic.

Researchers uncover secrets of internal cell fine-tuning

7 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

User comments : 0