Researchers find metabolic pathway in malaria parasites; possible drug targets

Aug 04, 2010

A newly described metabolic pathway used by malaria-causing parasites may help them survive inside human blood cells. The finding, by researchers supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, clarifies the picture of parasite metabolism and provides clues to potential weak points in the pathway that might be attacked with drugs.

In most living things, several major chemical processes involved in converting food to energy are linked through a cyclic hub called the tricarboxylic acid cycle, also known as the Krebs cycle. NIAID grantee Manuel Llinas, Ph.D., of Princeton University, and his colleagues discovered that Plasmodium falciparum, the deadliest , uses a double-branched instead of the classical loop. According to Dr. Llinás, this specific branched pathway has not been detected previously in any other organism.

The parasite appears to use one branch primarily to generate the molecule acetyl-CoA, which it needs to thrive within a host organism. This branch may represent particularly vulnerable spots to target with anti-malarial drugs, says Dr. Llinás. The detailed description of the chemical steps involved in the metabolic pathway of the malaria parasite also could aid future malaria drug development efforts because the pathway sits at the heart of several other biological processes currently being investigated as drug targets.

So far, it is clear that the newly discovered pathway operates while the parasites are growing inside human blood cells. Next, the scientists will explore whether the parasite uses the same pathway during other stages of its lifecycle in humans and in mosquitoes, and how exactly it is involved in the metabolic control of the cell.

Explore further: Parasitic worm genomes: largest-ever dataset released

More information: KL Olszewski et al. Branched tricarboxylic acid metabolism in Plasmodium falciparum. Nature. DOI: 10.1038/nature09301 (2010).

Provided by National Institutes of Health

not rated yet

Related Stories

Recommended for you

Parasitic worm genomes: largest-ever dataset released

15 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Bitter food but good medicine from cucumber genetics

Nov 27, 2014

High-tech genomics and traditional Chinese medicine come together as researchers identify the genes responsible for the intense bitter taste of wild cucumbers. Taming this bitterness made cucumber, pumpkin ...

New button mushroom varieties need better protection

Nov 27, 2014

A working group has recently been formed to work on a better protection of button mushroom varieties. It's activities are firstly directed to generate consensus among the spawn/breeding companies to consider ...

Cataloguing 10 million human gut microbial genes

Nov 25, 2014

Over the past several years, research on bacteria in the digestive tract (gut microbiome) has confirmed the major role they play in our health. An international consortium, in which INRA participates, has developed the most ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Ravenrant
not rated yet Aug 05, 2010
I have a better idea. Genetically modify mosquito females to not need blood to reproduce so bloodsucking gets bred out of the species.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.