Autonomous quantum error correction technique proposed for quantum memories

Aug 04, 2010 By Lisa Zyga feature
A diagram of the proposed quantum memory with autonomous quantum error control (QEC). Image credit: Kerckhoff, et al. (c)2010 APS.

(PhysOrg.com) -- While words such as "powerful" and "efficient" are often used to describe the potential of quantum computing, these quantum systems can be very fragile at the same time. Errors in quantum systems can easily arise due to decoherence - which occurs when a quantum state interacts with its environment - as well as unwanted noise or defective components. In order to protect quantum systems from these problems, physicists use quantum error correction (QEC) techniques to identify and correct errors without disturbing the system.

In a recent study, physicists have developed a new QEC technique that can be directly embedded into quantum memories. Because the method is implemented "on-chip," it requires no external clocking or logic. In addition, all control operations are performed autonomously by an embedded , which is different than most previous QEC approaches. The researchers hope that the design could be useful for nanophotonics implementations and quantum-optical engineering.

“Good QEC designs can improve implementation efficiency by reducing the hardware and computational ‘overhead’ that is needed in the implementation of the QEC for a particular scheme,” coauthor Hendra Nurdin of Stanford University and the Australian National University told PhysOrg.com.

In general, it’s much more difficult to design QEC methods than it is to design classical error correction methods because in classical methods, bits can simply be copied for redundancy. However, qubits cannot be copied in the same way due to the non-cloning theorem. Yet physicists can get around this limitation in a few ways, such as by encoding a single “logical” qubit (representing the information carried) in the of three “physical” qubits using a technique called the bit-flip code.

The new autonomous QEC technique is based on the bit-flip code and another similar strategy called the phase-flip code, and can protect the stored information against independent unwanted flips to any, but not more than one, of the physical qubits. Whereas previous QEC approaches usually involved discrete restoration steps, the new approach involves a continuous syndrome readout to diagnose and correct errors. In this approach, each physical qubit is strongly coupled to its own optical cavity. If an error occurs so that one of the physical qubits has its state flipped, two feedback signals are sent to the qubit to flip it back and correct the error. The system is autonomous in that probe signals are continuously providing feedback to the qubits: less than two feedback signals in the case of no errors, and two feedback signals in the case of an error.

“This QEC design has the potential to be embedded on the same hardware platform as the quantum memory, such as in , and has the potential for reduced hardware overhead requirements because it does not require external clocking and logic to operate, nor does not it require interfacing to measurement devices,” Nurdin said. “Moreover, since all processing is performed coherently, no classical computations are required to determine the corrective feedback signals.”

Although the current design is just a proposal, the physicists explain that the circuitry could be realized with available technology, such as solid-state qubits coupled to electromagnetic resonators and waveguides. In the future, the scientists also plan to find ways to extend the design to QEC feedback networks that can correct a wider variety of errors.

Explore further: Simon's algorithm run on quantum computer for the first time—faster than on standard computer

More information: Joseph Kerckhoff, et al. “Designing Quantum Memories with Embedded Control: Photonic Circuits for Autonomous Quantum Error Correction.” Physical Review Letters 105, 040502 (2010).

4.8 /5 (13 votes)

Related Stories

First International Conference on Quantum Error Correction

Oct 01, 2007

Quantum error correction of decoherence and faulty control operations forms the backbone of all of quantum information processing. In spite of remarkable progress on this front ever since the discovery of quantum error correcting ...

Turning down the noise in quantum data storage

Jan 19, 2010

Researchers who hope to create quantum computers are currently investigating various methods to store data. Nitrogen atoms embedded in diamond show promise for encoding quantum bits (qubits), but the process ...

Straightening messy correlations with a quantum comb

Nov 23, 2009

Quantum computing promises ultra-fast communication, computation and more powerful ways to encrypt sensitive information. But trying to use quantum states as carriers of information is an extremely delicate ...

Recommended for you

Ultra-short X-ray pulses explore the nano world

6 hours ago

Ultra-short and extremely strong X-ray flashes, as produced by free-electron lasers, are opening the door to a hitherto unknown world. Scientists are using these flashes to take "snapshots" of the geometry ...

Physicist pursues superconductivity mysteries

10 hours ago

More than a quarter of a century after its discovery, high-temperature superconductivity still challenges condensed matter physicists. For Binghamton's Pegor Aynajian, the key to unlocking the mystery—which will ultimately ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Smellyhat
5 / 5 (2) Aug 04, 2010
Lisa! This article needs more editing. "The non-cloning theorem"? Really?

Otherwise, really neat stuff.
ppnlppnl
not rated yet Aug 05, 2010
Lisa! This article needs more editing. "The non-cloning theorem"? Really?

Otherwise, really neat stuff.


Google is your friend. Anyone with a basic curiosity about QM should already know this.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.