Generating energy from ocean waters off Hawaii

Aug 03, 2010
Average ocean temperature differences (at water depths of between 20 meters and 1000 meters depths) around the main Hawaiian Islands for the period July 1, 2007, through June 30, 2009, (the color palette is from 18°C to 24°C); the relatively more favorable area in the lee of the islands is clearly visible. Credit: Data from HYCOM (an academia-industry consortium, see: http://www.hycom.org/ and NCODA, public data from the U.S. Navy, see: https://www.fnmoc.navy.mil/public/. Image provided by Gerard Nihous.

Researchers at the University of Hawaii at Manoa say that the Leeward side of Hawaiian Islands may be ideal for future ocean-based renewable energy plants that would use seawater from the oceans' depths to drive massive heat engines and produce steady amounts of renewable energy.

The technology, referred to as Thermal Conversion (OTEC), is described in the Journal of Renewable and Sustainable Energy, which is published by the American Institute of Physics (AIP).

It involves placing a heat between warm water collected at the ocean's surface and cold water pumped from the deep ocean. Like a ball rolling downhill, heat flows from the warm reservoir to the cool one. The greater the temperature difference, the stronger the flow of heat that can be used to do useful work such as spinning a turbine and .

The history of OTEC dates back more than a half century. However, the technology has never taken off -- largely because of the relatively low cost of oil and other fossil fuels. But if there are any places on Earth where large OTEC facilities would be most cost competitive, it is where the differentials are the greatest.

An example of early OTEC field work in Hawaii: aerial view of the land-based experimental open-cycle OTEC plant that operated between 1993 and 1998 on the Big Island. The facility still holds the world record for OTEC power production, with turbo-generator output exceeding 250 kW and more than 100 kW of net power exported to the grid. Credit: Luis Vega

Analyzing data from the National Oceanic and Atmospheric Administration's National Oceanographic Data Center, the University of Hawaii's Gérard Nihous says that the warm-cold temperature differential is about one degree Celsius greater on the leeward (western) side of the Hawaiian Islands than that on the windward (eastern) side.

This small difference translates to 15 percent more power for an OTEC plant, says Nihous, whose theoretical work focuses on driving down cost and increasing efficiency of future facilities, the biggest hurdles to bringing the technology to the mainstream.

"Testing that was done in the 1980s clearly demonstrates the feasibility of this technology," he says. "Now it's just a matter of paying for it."

Explore further: Idealistic Norwegian sun trappers

More information: The article, "Mapping available Ocean Thermal Energy Conversion resources around the main Hawaiian Islands with state-of-the-art tools" by Gérard C. Nihous will appear in the Journal of Renewable and Sustainable Energy. See: jrse.aip.org/jrsebh/v2/i4/p043104_s1

More information in the project, see: hinmrec.hnei.hawaii.edu/ongoin… ec-thermal-resource/

Provided by American Institute of Physics

4.2 /5 (5 votes)

Related Stories

The Inexhaustible Energy Source Beneath Our Feet

May 24, 2004

According to the expert Willy Gehrer, the environmentally friendly generation of electricity from geothermal sources is going to play an important role in the future of energy production. “I’m convinced that ...

Explained: The Carnot Limit

May 19, 2010

Anytime engineers try to design a new kind of heat-based engine or improve on an existing design, they bump up against a fundamental efficiency limit: the Carnot Limit.

Where's The Heat? Think 'Deep Blue'

Jul 25, 2005

"It's a match!" For detectives in a crime story, identical fingerprints or cloth fibers might solve the case. For scientists, it could be something equally dramatic. It might be real-life observations that match the simulations ...

Energy-efficient water purification

Jan 14, 2009

Water and energy are two resources on which modern society depends. As demands for these increase, researchers look to alternative technologies that promise both sustainability and reduced environmental impact. Engineered ...

MEMS device generates power from body heat

Apr 29, 2010

(PhysOrg.com) -- In an attempt to develop a power source that is compact, environmentally friendly, and has an unlimited lifetime, a team of researchers from Singapore has fabricated an energy harvesting device ...

'Smart' fridges stay cool by talking to each other

Jan 13, 2009

(PhysOrg.com) -- 'Smart' fridges that run on renewable electricity and are capable of negotiating the most energy efficient way to keep food cold have been developed by researchers from CSIRO’s Energy Transformed ...

Recommended for you

Team improves solar-cell efficiency

7 hours ago

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Calif. teachers fund to boost clean energy bets

7 hours ago

The California State Teachers' Retirement System says it plans to increase its investments in clean energy and technology to $3.7 billion, from $1.4 billion, over the next five years.

Idealistic Norwegian sun trappers

13 hours ago

The typical Norwegian owner of a solar heating system is a resourceful man in his mid-fifties. He is technically skilled, interested in energy systems, and wants to save money and protect the environment.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

CouchP
not rated yet Aug 04, 2010
Step one in the plan is nearer.

http://en.wikiped...sy_Steps